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CROISSANT SYSTEM

with d the distance along the radius a from the center of the
shell. Here !trailing and !leading are the widths of the Gaussian
inside and outside of the shell, respectively. We find that allow-
ing this asymmetry results in better fits to the observations.

Equation (1) implies that the model can be easily adopted to
treat the CME at different heights using self-similar expansion.
Under this assumption, the size of a given CME feature will scale
with distance from Sun center, namely, l ¼ "r. In this paper we
have only modeled CMEs at a single observation time.

The different parameters of themodel are summarized in Table 1.
Note that the leading-edge height is not an independent param-
eter of themodel: it is a function of the height of the legs (assumed
to be the same), h, the half-angular width,# , and the coefficient ":

hfront ¼ h
1þ "

1# "2

1þ sin #

cos #
; ð3Þ

with hfront the height of the CME model leading edge. Note also
that the leg height h is given relative to Sun center. The photo-
sphere is set to 1 R&.

Figure 2 shows two synthetic coronagraph images of the GCS
model, viewed in the same orientation as in Figure 1, face-on and
edge-on, respectively. The images are generated using a ray-tracing
renderer that takes full account of the Thomson scattering equations
(see Appendix). Figure 2 shows that the brightest features in the
simulated images correspond to the location of density peak in
equation (1). The legs in the synthetic images (Fig. 2, left ) look
bigger than what is generally observed in real data. Here we are
only interested in reproducing the general morphology of the
CME and the density at the front. For computational simplicity,
we adopt the linear function shown in equation (1) for our shell
cross section.We note that there exist other parameterizations for
the cross section of a flux ropeYlike structure (e.g., Chen et al.
2000) that can improve the agreement with observations regard-
ing the legs of the CME.

Figure 3 shows how we locate our GCS model in 3D space
with respect to the solar surface. Most of the position parameters
are taken from the observations of the neutral line of the SR for

our modeled CME. The model is positioned normal to the pho-
tosphere with the legs at the opposite ends of the neutral line. The
neutral line is centered at a given Carrington longitude $ and lat-
itude %with a tilt & relative to the solar equator. A summary of all
the free parameters of the model can be found in Table 1.

3. MODELING BASED ON CB04 MEASUREMENTS

3.1. Selection of the Events

Our starting point is the 124 CMEs studied by CB04. We first
picked those events that showed clear agreement with the neutral-
line orientation according to CB04. Then we used the LASCO
movies of these events to discard those with overly complicated
structures andweak, undefined CME fronts. Since ourGCSmodel
is simple, we are only interested in replicating the large-scale

Fig. 2.—Simulated white-light images of the GCS model as seen in Fig. 1. Left: GCS model seen face-on. Right: GCS model seen edge-on.

Fig. 3.—Location of theGCSmodel in 3D space based on observations of the
SR neutral line.
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THE CROISSANT GEOMETRY

density without making assumptions on the morphology of the
density. Van deHulst (1950) andmore recentlyHayes et al. (2001)
or Quémerais &Lamy (2002), for example, assumed local spher-
ical symmetry of the density in order to determine the radial den-
sity profile of the quietK corona (streamer and coronal holes). This
is the simplest assumption that can bemade, and it is clearly valid
in the case of the solar-minimum quiet corona. Another method,
known as solar rotational tomography, has also been used on
LASCO data to reconstruct the electron density of the corona
(Frazin& Janzen 2002; Frazin&Kamalabadi 2005a, 2005b). This
method also relies on the assumption that the corona remains con-
stant during a Carrington rotation, which is obviously a limitation
when looking at transient events like CMEs. Nevertheless, when
multiple views of a CME are available, tomography techniques
can be used as demonstrated in Jackson&Froehling (1995), who
used Helios and Solwind observations to reconstruct the three-
dimensional electron density of a CME.We approach this problem
using a forward-modeling technique. We construct a geometric
model for the structure under analysis with a certain number of
free parameters.We then vary these parameters tomatch the obser-
vations. Such methods are more suitable when the assumption of

spherical symmetry is not valid. Thernisien &Howard (2006) im-
plemented this technique for the reconstruction of a streamer.
They assumed a slab model morphology for a portion of the
streamer belt andmade use of aminimization technique to derive
the electron density.
In this present study,we expand this technique toLASCOCME

observations to derive the electron density in the leading edge of
CMEs. We point out that such a forward-modeling method will
be extremely useful for locating the position of CMEs in space
using the two-point viewing from the upcoming STEREO mis-
sion, as Pizzo&Biesecker (2004) demonstrated using a geometric
model and a triangularization method. The paper continues with
a description of our flux rope model in x 2, its application to the
CB04 measurements in x 3, and its comparison to the observa-
tions in x 4. We discuss the results and conclude in x 5.

2. THE GRADUATED CYLINDRICAL SHELL MODEL

The graduated cylindrical shell (GCS) ismeant to reproduce the
large-scale structure of flux ropeYlike CMEs. It therefore consists
of a tubular section forming themain body of the structure attached
to two cones that correspond to the ‘‘legs’’ of the CME. The re-
sulting shape is reminiscent of a croissant. Figure 1 shows a face-
on and an edge-on representation of the model. The cross section
of the model is a circular annulus of varying radius, a, given by

a(r) ¼ !r; ð1Þ

where r the distance from the center of the Sun to a point at the
outer edge of the shell, and ! is a constant depending on the stud-
ied event. For certain projection angles, the parameter ! can be
viewed as theCMEaspect ratio since it is the ratio of theCMEsize
at two orthogonal directions. The tube attaches to the two conical
‘‘legs’’ at a height h, which is another free parameter of the model.
In Figure 1 the axis through the center of the tube is repre-

sented with the dash-dotted line, and the outline of the model is
represented with a solid line. To create synthetic coronagraph im-
ages from this model, we need to prescribe a density profile. We
use an asymmetric Gaussian profile along the radius a at which
the density peaks at the outer surface of the shell and falls off with
a different Gaussian width on either side. Namely,

Ne(d ) ¼ Ne exp $ d $ a

"s

! "2
" #

;

"s ¼
"trailing; if d < a;

"leading; if d % a;

#
ð2Þ

Fig. 1.—GCS face-on and edge-on representations. The dash-dotted line shows
the axis through the center of the shell. The solid line represents a lengthwise planar
cut through the cylindrical shell and the origin. It shows the locus of the peak of
density in the shell. On the upper right, we show the electron density profile of the
shell, Ne(d ) (see eq. [2]); "t and "l are respectively the trailing and leading falloff
coefficients of the density profile. ‘‘O’’ corresponds to the center of the Sun.

TABLE 1

Model and Positioning Parameters

Parameter Description

Model Parameters

2# ..................................... Angular width between the ‘‘legs’’ of the GCS model

h........................................ Height of the legs

! ....................................... Aspect ratio (see eq. [1])

Ne...................................... Electron density factor

"trailing ............................... Gaussian width of the density profile in the interior of the GCS (see eq. [2])

"leading............................... Gaussian width of the density profile at the exterior of the GCS (see eq. [2])

Positioning Parameters

$, % ................................... Carrington longitude and heliographic latitude of the SR

& ....................................... Tilt angle of the SR neutral line
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density without making assumptions on the morphology of the
density. Van deHulst (1950) andmore recentlyHayes et al. (2001)
or Quémerais &Lamy (2002), for example, assumed local spher-
ical symmetry of the density in order to determine the radial den-
sity profile of the quietK corona (streamer and coronal holes). This
is the simplest assumption that can bemade, and it is clearly valid
in the case of the solar-minimum quiet corona. Another method,
known as solar rotational tomography, has also been used on
LASCO data to reconstruct the electron density of the corona
(Frazin& Janzen 2002; Frazin&Kamalabadi 2005a, 2005b). This
method also relies on the assumption that the corona remains con-
stant during a Carrington rotation, which is obviously a limitation
when looking at transient events like CMEs. Nevertheless, when
multiple views of a CME are available, tomography techniques
can be used as demonstrated in Jackson&Froehling (1995), who
used Helios and Solwind observations to reconstruct the three-
dimensional electron density of a CME.We approach this problem
using a forward-modeling technique. We construct a geometric
model for the structure under analysis with a certain number of
free parameters.We then vary these parameters tomatch the obser-
vations. Such methods are more suitable when the assumption of

spherical symmetry is not valid. Thernisien &Howard (2006) im-
plemented this technique for the reconstruction of a streamer.
They assumed a slab model morphology for a portion of the
streamer belt andmade use of aminimization technique to derive
the electron density.
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observations to derive the electron density in the leading edge of
CMEs. We point out that such a forward-modeling method will
be extremely useful for locating the position of CMEs in space
using the two-point viewing from the upcoming STEREO mis-
sion, as Pizzo&Biesecker (2004) demonstrated using a geometric
model and a triangularization method. The paper continues with
a description of our flux rope model in x 2, its application to the
CB04 measurements in x 3, and its comparison to the observa-
tions in x 4. We discuss the results and conclude in x 5.
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large-scale structure of flux ropeYlike CMEs. It therefore consists
of a tubular section forming themain body of the structure attached
to two cones that correspond to the ‘‘legs’’ of the CME. The re-
sulting shape is reminiscent of a croissant. Figure 1 shows a face-
on and an edge-on representation of the model. The cross section
of the model is a circular annulus of varying radius, a, given by

a(r) ¼ !r; ð1Þ

where r the distance from the center of the Sun to a point at the
outer edge of the shell, and ! is a constant depending on the stud-
ied event. For certain projection angles, the parameter ! can be
viewed as theCMEaspect ratio since it is the ratio of theCMEsize
at two orthogonal directions. The tube attaches to the two conical
‘‘legs’’ at a height h, which is another free parameter of the model.
In Figure 1 the axis through the center of the tube is repre-

sented with the dash-dotted line, and the outline of the model is
represented with a solid line. To create synthetic coronagraph im-
ages from this model, we need to prescribe a density profile. We
use an asymmetric Gaussian profile along the radius a at which
the density peaks at the outer surface of the shell and falls off with
a different Gaussian width on either side. Namely,

Ne(d ) ¼ Ne exp $ d $ a
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Fig. 1.—GCS face-on and edge-on representations. The dash-dotted line shows
the axis through the center of the shell. The solid line represents a lengthwise planar
cut through the cylindrical shell and the origin. It shows the locus of the peak of
density in the shell. On the upper right, we show the electron density profile of the
shell, Ne(d ) (see eq. [2]); "t and "l are respectively the trailing and leading falloff
coefficients of the density profile. ‘‘O’’ corresponds to the center of the Sun.

TABLE 1

Model and Positioning Parameters

Parameter Description

Model Parameters

2# ..................................... Angular width between the ‘‘legs’’ of the GCS model

h........................................ Height of the legs

! ....................................... Aspect ratio (see eq. [1])

Ne...................................... Electron density factor

"trailing ............................... Gaussian width of the density profile in the interior of the GCS (see eq. [2])

"leading............................... Gaussian width of the density profile at the exterior of the GCS (see eq. [2])

Positioning Parameters

$, % ................................... Carrington longitude and heliographic latitude of the SR

& ....................................... Tilt angle of the SR neutral line
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THE CROISSANT POSITION
Position of the apex in spherical coordinate system:

Latitude [-90,90]
Longitude [0,360] (Stonyhurst or Carrington)

+
Tilt

(angle of the front with respect to solar equator)

with d the distance along the radius a from the center of the
shell. Here !trailing and !leading are the widths of the Gaussian
inside and outside of the shell, respectively. We find that allow-
ing this asymmetry results in better fits to the observations.

Equation (1) implies that the model can be easily adopted to
treat the CME at different heights using self-similar expansion.
Under this assumption, the size of a given CME feature will scale
with distance from Sun center, namely, l ¼ "r. In this paper we
have only modeled CMEs at a single observation time.

The different parameters of themodel are summarized in Table 1.
Note that the leading-edge height is not an independent param-
eter of themodel: it is a function of the height of the legs (assumed
to be the same), h, the half-angular width,# , and the coefficient ":

hfront ¼ h
1þ "

1# "2

1þ sin #

cos #
; ð3Þ

with hfront the height of the CME model leading edge. Note also
that the leg height h is given relative to Sun center. The photo-
sphere is set to 1 R&.

Figure 2 shows two synthetic coronagraph images of the GCS
model, viewed in the same orientation as in Figure 1, face-on and
edge-on, respectively. The images are generated using a ray-tracing
renderer that takes full account of the Thomson scattering equations
(see Appendix). Figure 2 shows that the brightest features in the
simulated images correspond to the location of density peak in
equation (1). The legs in the synthetic images (Fig. 2, left ) look
bigger than what is generally observed in real data. Here we are
only interested in reproducing the general morphology of the
CME and the density at the front. For computational simplicity,
we adopt the linear function shown in equation (1) for our shell
cross section.We note that there exist other parameterizations for
the cross section of a flux ropeYlike structure (e.g., Chen et al.
2000) that can improve the agreement with observations regard-
ing the legs of the CME.

Figure 3 shows how we locate our GCS model in 3D space
with respect to the solar surface. Most of the position parameters
are taken from the observations of the neutral line of the SR for

our modeled CME. The model is positioned normal to the pho-
tosphere with the legs at the opposite ends of the neutral line. The
neutral line is centered at a given Carrington longitude $ and lat-
itude %with a tilt & relative to the solar equator. A summary of all
the free parameters of the model can be found in Table 1.

3. MODELING BASED ON CB04 MEASUREMENTS

3.1. Selection of the Events

Our starting point is the 124 CMEs studied by CB04. We first
picked those events that showed clear agreement with the neutral-
line orientation according to CB04. Then we used the LASCO
movies of these events to discard those with overly complicated
structures andweak, undefined CME fronts. Since ourGCSmodel
is simple, we are only interested in replicating the large-scale

Fig. 2.—Simulated white-light images of the GCS model as seen in Fig. 1. Left: GCS model seen face-on. Right: GCS model seen edge-on.

Fig. 3.—Location of theGCSmodel in 3D space based on observations of the
SR neutral line.
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