Probabilistic model for heliospheric propagation of CMEs: Drag-Based Ensemble Model (DBEM)

Jaša Čalogović

jcalogovic@geof.hr Institute of Physics, University of Graz, Austria Hvar, Faculty of Geodesy, Zagreb, Croatia

M. Dumbović, B. Vršnak, M. Temmer, A. Veronig, L. M. Mays

Heliospheric propagation models are important for space weather forecasting

- CME/ICMEs major drivers of solar wind disturbances and geomagnetic storms
- Prediction of CME/ICMEs
 propagation in the
 heliosphere important task
 for space weather forecasting
- Various models are used for space weather forecasting:

- purely empirical/statistical methods
- kinematical-empirical methods
- analytical (M)HD-based models (DBM)
- numerical MHD-based models (ENLIL)

Drag-Based Model (DBM)

Cargill et al., 1996; Vršnak and Žic, 2007; Vršnak et al. 2013

"aerodynamic" drag (a_d) caused by the interaction of CME with solar wind, becomes the dominant force

$$a = a_L - g + a_d$$
 $a_d = -\gamma(v-w)|v-w|$ Equation of motion

- CME dynamics is governed by interaction with (ambient) solar wind (w)
 - fast CME (v > w) → deceleration
 - slow CME (v < w) \rightarrow acceleration
- Drag parameter (γ) depends on characteristics of both CME and solar wind the drag is larger for broader, low-mass CMEs in a high-density (slow) solar wind
- If w and γ constant there is analytical solution

Drag-Based Model (DBM)

 Simple analytical model for heliospheric propagation of CMEs to predict the arrival time and speed of CME at any given target in the solar system

Advantages

- simple and robust
- very fast (one run << 1 sec) compared to numerical MHD models (e.g. ENLIL)

Disadvantages

 doesn't give the best results in complex heliospheric environment (eg. CME-CME interactions, w and γ aren't constant)

DBM and online space weather tools

 Latest DBM version is integrated into ESA Space Situational Awareness (SSA) portal (CME leading-edge flattening):

http://swe.ssa.esa.int/heliospheric-weather

 ESA Expert Service Center for Solar & Heliospheric Weather:

http://swe.uni-graz.at

 Hvar Observatory - Forecasting the Arrival of ICMEs:

http://oh.geof.unizg.hr/DBM/dbm.php

Forecasting the Arrival of ICMEs: The Drag-Based Model						
lasic DBM	Advanced DBM	Documentation				
CME take-off date			Sep 3 26 2017 1			
	CME take-off time (UTC): R ₀ - starting radial distance of CME (R ₀) v ₀ - speed of CME at R ₀ (xm/s) F - drag parameter (10 ⁻⁷ km ⁻¹)		17 h 35 min			
			20			
			1000			
			0.5			
	w - asymptotic sol	ar wind speed (km/s)	450			
R _{target} - target hei		locentric distance (AU)	1			
		Calculate	Reseti			

 CME Arrival Time Scoreboard – NASA Space Weather Research Center:

http://swrc.gsfc.nasa.gov/main/cmemodels

The COMESEP alert system (DBM input from CACTus):

http://www.comesep.eu/alert

DBM CME geometry

- Uses CME cone geometry with CME leading-edge flattening
- Solar wind speed (w) is radially dependent w(R) and γ is also function of radial distance γ(R)
- each CME leading-edge segment propagates independently → the initial cone geometry flattens

DBM and observations

Examples of ICME kinematics

Fast ICME $\gamma = 2.0 \times 10^{-7} \text{ km}^{-1}$ 12 December 2008 w = 350 km/s

Slow ICME $\gamma = 1.6 \times 10^{-7} \text{ km}^{-1}$ 15 November 2007 w = 600 km/s

Reliable observations are needed for better accuracy of heliospheric propagation models

 In about 55% of events DBM has error (observed – calculated) less than 12h and more than 85% of events has error less than 1 day

Comparison od DBM and WSA-ENLIL-CONE model (Vršnak et al., 2014)

- Relative difference is most often less than 10%
- ENLIL preforms better during the solar maximum due to complex solar wind structure (differences 10-11h) and DBM can provide better results during the solar minimum (differences 6-9h)

However, the main problem of all models is the <u>lack of reliable observations</u> (input) eg. CME launch speed

Ensemble modelling

Drag-based Ensemble Model (DBEM)

- Recently, the DBM code was rewritten to python (modular design)
- Optimizations and improvements in the code → new version of DBM runs up to 200 times faster
- Parallelization of code that supports multi thread (CPU) calculations (up to 1000x faster)

Example for input parameters for CME on 6 Feb 2013

Each DBEM input
 parameter can be
 defined as list of
 parameters (eg. multiple
 observations of the same
 event)

Member ID	date & time	Latitude	Longitude	Half- Width	Speed
1	2013-02-06 03:15	30	-25	38	1226
2	2013-02-06 03:07	30	-35	38	1300
3	2013-02-06 02:42	33	-28	28	1389
4	2013-02-06 02:37	30	-20	27	1436
5	2013-02-06 02:40	30	-26	43	1460
6	2013-02-06 02:39	30	-24	36	1474
7	2013-02-06 02:37	33	-19	28	1536
8	2013-02-06 03:01	39	-33	43	1387
9	2013-02-06 02:40	30	-26	22	1460
10	2013-02-06 02:52	35	-30	27	1430
11	2013-02-06 02:44	34	-25	30	1470
12	2013-02-06 02:54	40	-28	30	1441
*	2013-02-06 02:41	30	-26	30	1460

Create m synthetic measurements based on the known error (CI) for each parameter

- For each input parameter can be generated m synthetic measurements in a range determined by standard deviation
- Assumption: parameters follow a normal distribution

$$x = \overline{x} \pm \Delta x$$
, $\Delta x = 3\sigma$

- Density of syn. measurements is denser near mean value than at the end of distribution (3σ)
- It was found that optimal number of syn. measurements is m=15

 $\gamma = (0.1 \pm 0.05) 10^{-7} \text{ km}^{-1}$

Optimal number of synthetic measurements (m)

For m synthetic measurements of solar wind speed (w) and γ parameter

n - number of ensemble members (different measurements)

Example of DBEM results ICME on 30 August 2013

Very fast (calculated on single thread 1.6 Ghz Intel i5, 150 it/sec)

Distributions
for CME transit
time (TT) and
impact speed
(v) including
mean value,
median and
confidence
intervals

results ICME on 30 August 2013

 Results of DBEM can be used to investigate which input parameters are responsible for certain results (eg. criteria: hits/misses target)

DBEM and **ENLIL** comparison

- ENLIL and DBEM perform similarly
- number of false alarms should be reduced
- fast CMEs predicted to arrive too early

		DBEM	ENLIL
No of hits	а	16	16
No of misses	С	0	0
No of false alarms	b	4	3
No of correct rejections	d	5	6
No of events	N=a+b+d	25	25
Correct rejection rate	d/(b+d)	55,56%	66,67%
False alarm rate	b/(b+d)	44,44%	33,33%
Correct alarm ratio	a/(a+b)	80,00%	84,21%
False alarm ratio	b/(a+b)	20,00%	15,79%
Brier score	BS	0,17	0,18

CME arrival time prediction error plotted against the CME input speed

DBEM vs ENLIL

ENLIL-calculated vs. DBEM-calculated transit time

Observed vs. calculated transit time for ENLIL (green) and DBEM (blue)

Reliability diagram of the forecast probability of CME arrival (DBEM vs ENLIL)

- at 100% forecast probability both DBEM and ENLIL overforecast
- at 0% forecast probability both models are at the line of perfect reliability (limited number of events)
- Intermediate bins (0-100%) both models slightly underforecast (limited number of events)

Conclusions

- Very fast (up to 1000 runs per sec), reliable and simple model
- Suited for a fast real-time space-weather forecasting
- Comparisons with numerical MHD models (ENLIL) show good accuracy of DBM at very low computational cost
- DBM performs better during the solar minimum than in the solar maximum, due to the complex heliospheric environment (eg. CME-CME interaction)
- DBEM can provide important information such as confidence intervals of CME arrival time and impact speed related to the input errors (observations)

Outlooks for DBEM

- will be integrated soon in ESA Space Situational Awareness (SSA) portal (http://swe.ssa.esa.int/heliospheric-weather)
- CME Arrival Time Scoreboard NASA Space Weather Research Center (http://swrc.gsfc.nasa.gov/main/cmemodels)

Thank you for your attention

We acknowledge the **ESA Space Situational Awareness** Programme's network of space weather service development activities, supported under **ESA contract number 4000113183/15/D/MRP**. We also acknowledge the support of the **Croatian Science Foundation** under the project 6212 "**Solar and Stellar Variability**" (SOLSTEL).

Further DBEM developments

