

Forecasting of geoeffectiveness and Cosmic Ray modulation induced by Corotating Interaction Regions

Hvar Observatory Faculty of Geodesy Zagreb, Croatia

Dumbović, M., Vršnak, B., Heber, B., Temmer, M., Veronig, A.

Christian-Albrechts-Universität zu Kiel

Corotating Interaction Regions (CIR)

- compression regions formed from the interaction of high- and low-speed solar wind streams
- corotating with the Sun
- Major driver of solar-wind disturbances and geomagnetic storms during solar minimum (low CME activity)

CIRs and geoeffectiveness

- Total impact of CIRs on geoeffectivity can be even larger or comparable to ICMEs - long-lasting and permanent contribution to geomagnetic activity throughout the whole solar cycle (Tsurutani et al., 1995; Vennerstroem, 2001; Tsurutani et al., 2006)
- CIRs can be source of geomagnetic activity for about 70% of time in solar min and about 30% in solar max (1972 1986). For comparison CME-related structures contribute 50% in solar max and <10% outside the solar max (Richardson et al., 2000)
- About 33% of CIRs (1964-2003) at Earth are followed with moderate or intense geomagnetic disturbances, Dst < 50nT (Alves et al., 2006)
- About 47% CIR in solar cycle 23 (1996-2005) produced storms with Dst < 50nT (Zhang et al., 2008)
- 2-5% of CIRs can occasionally alone produce major geomagnetic storms with Dst < 100nT (Alves et al., 2006; Zhang et al., 2008)
- Geomagnetic activity is most influenced by the southward component of the IMF, Bs (Gonzalez et al., 1994; Tsurutani and Gonzalez, 1995)

Coronal Holes (CH)

Large CH, May 17 – 19, 2016

- source regions of the highspeed solar wind
- connected with open magnetic field form the Sun
- visible as dark regions in EUV or X-ray observations of the solar corona

Coronal holes and solar wind

Forecasting solar wind high-speed streams (ESWF) http://swe.uni-graz.at/index.php/services/solar-wind-forecast

based on an empirical relation between CH and high speed streams measured at Earth (Vršnak et al. 2007)
CH areas are extracted from EUV images (Krista and Gallagher, 2009; Rotter et al., 2012; Reiss et al., 2015)

CH area data

- extracted with SOHO EIT 195 Å images
- CHs can be identified with intensity-based thresholding technique (Rotter et al., 2012, Reiss et al. 2016)
- fractional coronal hole area is derived from a central meridional slice (±7.5°) corresponding to the solar rotation within aprox. 1 day
- period of CH data: 1.1.2007 31.12.2010
- 4 measurements per day, 23% missing data

FORECASTING OF GEOEFFECTIVENESS INDUCED BY COROTATING INTERACTION REGIONS | 2ND VARSITI GENERAL SYMPOSIUM | 10 - 15 JUL 2017 | IRKUTSK, RUSSIA

CH fractional area, solar wind parameters (v, B, vB_z) and geomagnetic indices (Dst, ap, AE) during period 2007-2011

Dst index - strength of magnetic disturbance at the dipole equator on the Earth's surface (ring current). ap index - level of the middle latitude magnetic activity during the periods of 3h (derived from Kp). AE index - measure of a global auroral zone magnetic or substorm activity produced by enhanced ionospheric currents flowing below and within the auroral oval (polar electrojet)

CMEs / ICMEs (2007 – 2011)

SOHO/LASCO CME daily data

30 ICMEs during 2007 – 2011 period based on ICME list from Richardson & Cane, 2010

ICMEs removal

- 12h before ICME event
 removed
- 72h after ICME event removed
- in total 9.2% data
 excluded (101 days)

Superposed epoch analysis (SEA) during period 2007 - 2010

- 52 CIR events selected, SIR list from Jian et al. 2011
- All events centered around key date (t = 0) corresponding to arrival of stream interface
- B_z and vB_z as well the enhanced dB between t = -0.5d and t = 2d indicate Alfven wave activity
- ap index shows somewhat faster recovery than AE - more sensitive to smaller magnetic field fluctuations or Alfven wave activity

Cross-correlation analysis

- Best correlation with solar wind speed, v (r=0.53 at lag=-4d)
- IMF B (r=0.2 at lag=-2.25d), dB (r=0.29 at lag=-3d) and vB (r=0.37 at lag=-3d) show better correlation
- Convection electric field vB_z (r=0.09) shows no correlation with CH
- ap index (r=0.35 at lag=-3.25d)
- AE index (r=0.31 at lag=-3.5d)
- Dst index (r=-0.24 at lag=-4.5d)

CH ratio and solar wind parameters (n, T, v, B, dB, vB)

CH ratio and geomagnetic indices (Dst, ap, AE)

- Best correlation ap index (r=0.35 at lag=-3.25d), then AE index (r=0.31 at lag=-3.5d) Dst index (r=-0.24 at lag=-4.5d)
- Geomagnetic activity determined by convection electric field (E_y=-v x B_s)
- SW speed v relates very good to CH area, however B_z doesn't show good relation to CH
- v ranges 250-750 km/s (about 3x)
- Bz ranges 0-10 nT (5-10x)

Major problem: forecast accuracy is limited trough B_z

Semiannual variation (Russel-McPherron effect)

- dependence of geoeffectivity on different seasons (Russell and McPherron, 1973)
- in the period around the spring equinox the effect of negative polarity CHs on Dst is increased and positive polarity CHs is decreased
- In the period around the autumn equinox the situation reverses

SOHO EPHIN

- Electron Proton Helium Instrument (EPHIN)
- onboard SOHO spacecraft
- data available from December 07 1995
- consists of several semiconductor detectors in layers (A-F) and a scintillation detector, operated in anticoincidence

SOHO EPHIN data

Counter B > 4 MeV/n

Anticoincidence Counter

Counter F > 50 MeV/n

- interpolation of small gaps in the data (up to 18h)
- anomalies are calculated subtracting the running mean (54 days)

CH and CR flux, EPHIN (2007 – 2011)

CH area and CR flux (EPHIN)

- Correlation with lag 4417 points (1104 days)
- Counter B: r = -0.23 (lag -4.75 days)
- Anticoincidence Counter: r = -0.40 (lag -4.50 days)
- Counter F:
 r = -0.42 (lag -4.5 days)

Conclusions

- Opportunity to <u>forecast 3-4 days in advance</u> a geoeffectiveness of CIRs as well as their effect on the cosmic ray flux during the solar minimum in the absence of ICMEs
- ap and AE indexes show good relationship to CH area (r=0.35 at lag=-3.25d, r=0.31 at lag=-3.5d) and Dst has slightly lower correlation coefficient (r=-0.24 at lag=-4.5d)
- Forecast limitation is unknown B_z that doesn't relate to CH
- Cosmic ray flux and CH area show also good correlation (r=0.4 at lag=4.5 d)
- Better forecast could be obtained by including the CH polarity data

Thank you for your attention!

We acknowledge the support of the Croatian Science Foundation under the project 6212 "Solar and Stellar Variability" (SOLSTEL).