

Seminar

Europska Unija Ulaganje u budućnost Projekt je sufinancirala Europska unija iz Europskog socijalnog

ERUPTIVNI PROCESI U SUNČEVOJ KORONI I NJIHOVO ŠIRENJE HELIOSFEROM

Tomislav Žic Opservatorij Hvar, Geodetski fakultet,Sveučilište u Zagrebu

Sadržaj

- Koronini izbačaji mase (CME)
 - Modeli erupcije
- Induktivitet magnetskog užeta
- Model magnetskog užeta
- Inicijacija izbačaja
- (Potpuno numerički MHD izračun (VAC kod) nastanka i propagacije udarnih valova
 - istraživanje Moretnonovih i EUV valova)
- Model MHD otpora (DBM)
 - s konstantnim Sunčevim vjetrom
 - testiranje modela
- Općeniti model i geometrija
 - primjena na međunarodnim prognostičkim stranicama
 - buduća integracija s naprednim numeričkim modelima, npr:
 - NASA ENLIL (http://www.swpc.noaa.gov/products/wsa-enlil-solar-wind-prediction)
 - automatska prognostika
- Rješavanje problema CME-CME međudjelovanja:
 - upotreba naprednih numeričkih modela VAC (Versatile Advection Code)

25.05.2016.

Koronini izbačaji mase (engl. CME)

- Procesima u koroni Sunce ($m_{\odot} \approx 2 \times 10^{30}$ kg) gubi masu na 2 načina (Aschwanden, 2006):
 - kontinuiranim Sunčevim vjetrom $\approx (0.4-2) \times 10^{-10}$ g cm⁻² s⁻¹ [ili $\approx (0.2-1.2) \times 10^{10}$ kg/s]
 - sporadičnim (nekoliko na dan) koroninim izbačajima mase $\approx (0.02-2) \times 10^{-12} \text{ g cm}^{-2} \text{ s}^{-1} [ili \approx (0.01-1.2) \times 10^8 \text{ kg/s}]$
- Magnetska aktivnost \rightarrow eruptivni procesi \rightarrow koronin izbačaj mase:
 - MHD "eksplozije" u Sunčevoj koroni
 - magnetski "oblak" ubrzano ekspandira u okolni prostor (100–2000 km/s)
 - unutar tjedan dana stižu do Zemlje
 - mnoštvo visokoenergetskih nabijenih elektrona stiže do Zemlje za otprilike 1/2–1 sat nakon početka erupcije
- Oko 70% izbačaja povezano je s eruptivnim prominencijama koje mogu prerasti u CME

Trodijelna struktura CME

- Koronini izbačaji često imaju trodijelnu strukturu:
 - vodeći luk
 - praznina
 - svijetla jezgra katkad eruptivna prominencija

Tomislav Žic

- "halo" CME \rightarrow usmjereni prema ili od Zemlje
- Mogući oblici (nejasnoće zbog projekcijskih efekata):
 - magnetska vlakna (užadi, cijevi, engl. fluxropes)
 - polu-ovojnice
 - baloni/mjehuri

Karakteristični oblik

"Halo" CME

25.05.2016.

Karakteristični oblik "žarulje"

SoHO LASCO C2/C3 koronagraf. Erupcija CME-a 27.02.2000. Trodijelna struktura: vodeći luk, prazna šupljina sa svijetlom jezgrom (SoHO, 1995-)

25.05.2016.

Podjela modela izbačaja

25.05.2016.

Model magnetske strukture CME/bljesak sistema

- Arkade magnetskih silnica obavijaju prominencijski materijal
- rekonekcijom se uvodi novi magnetski tok i plazmu
- novi rekonekcijski tok pospješuje uzdizanje magnetskog vlakna

 U podnožju → kromosferski mlaz → dvovlaknasti bljesak

25.05.2016.

Chen-ov (1989) model magnetskog užeta

- uključuje:
 - − Lorentzovu silu, **j**×**B**
 - silu od gradijenta tlaka, $F_{\nabla p}$
 - gravitacijsku silu, F_g
- unutar petlje, komponente:
 - toroidalne: $j_{\parallel} \rightarrow B_{\varphi}$
 - poloidalne: $j_{\varphi} \rightarrow B_{\parallel}$
- konstantan razmak između nožišta: 2S
- r_T , R_T su mali i veliki polumjeri torusoida

 $F_{\nabla p}$

В

$$F_{r} = \frac{2V}{r_{T}} \left(-\frac{B_{\varphi}^{2}}{2\mu_{0}} + \frac{\bar{B}_{||}^{2} - B_{||e}^{2}}{2\mu_{0}} + \bar{p} \right)$$

$$F_{r}^{2} \left(\ln \frac{8R_{T}}{r_{T}} - 1 + \frac{l_{i}}{2} \right) + \bar{p} + \frac{B_{||e}^{2} - \bar{B}_{||}^{2}}{2\mu_{0}} + \frac{B_{z}B_{\varphi}R_{T}}{2\pi r_{T}}$$

$$F_{r}^{2} \left(\ln \frac{8R_{T}}{r_{T}} - 1 + \frac{l_{i}}{2} \right) + \bar{p} + \frac{B_{||e}^{2} - \bar{B}_{||}^{2}}{2\mu_{0}} + \frac{B_{z}B_{\varphi}R_{T}}{2\pi r_{T}}$$

25.05.2016.

Induktivitet debelog strujnog torusa

- u prijašnjim modelima se koristi induktivitet *L* tankih strujnih petlji
- u stvarnosti izbačaji su debeli
- numerički se odredio induktivitet za debelu toroidalnu struju - zbroj vanjskog i unutarnjeg,

$$L = L_e + L_i$$

• dobiva se iz ukupnog toka:

$$\Phi = \Phi_i + \Phi_e = I(L_e + L_i)$$

i Biot-Savart-ov zakona:

$$\vec{B}(\vec{P}) = \frac{\mu_0}{4\pi} \int_{\mathcal{V}} \frac{\vec{j}(\vec{r}) \times \vec{q}(\vec{P}, \vec{r})}{\left| \vec{q}(\vec{P}, \vec{r}) \right|^3} d^3 \vec{r}$$

25.05.2016.

Profili gustoća struja unutar torusa

$$I = 2\pi \int_{0}^{r_{T}} j(r)r \, dr =: 1$$
$$j_{c}(r) = \frac{I}{r_{T}^{2}\pi}$$
$$j_{0}(r) = \frac{I}{2\pi r_{T}^{2}} r_{0} \frac{J_{0}(\frac{r_{0}}{r_{T}}r)}{J_{1}(r_{0})}$$
$$j_{1}(r) = \frac{I}{2\pi} \frac{J_{1}(\frac{r_{1}}{r_{T}}r)}{\int_{0}^{r_{T}} r J_{1}(\frac{r_{1}}{r_{T}}r) \, dr}$$
$$\cdot r_{0}, r_{1} \text{- prve nul-točke Besselovih funkcija } J_{0}, J_{1}$$

25.05.2016.

Prilagodba funkcije $B_z(S_{xy})$ izračunatom polju u xyravnini

7.25 × 10⁻⁷

$$7 × 10^{-7}$$

 $7 × 10^{-7}$
 $6.5 × 10^{-7}$
 $6.5 × 10^{-7}$
 $6.5 × 10^{-7}$
 $6.25 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $6 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7}$
 $5 × 10^{-7$

Ukupni induktivitet ovisi o torusnom omjeru

$$L_{i} = \frac{2W}{I^{2}} \qquad W = \int_{V} \frac{B_{\varphi}^{2}}{2\mu_{0}} dV \qquad B_{\varphi}(r) = \frac{\mu_{0}}{r} \int_{0}^{r} r' j(r') dr' \qquad L = L_{i} + L_{e} = L_{i} + \Phi_{e}/I$$

$$\frac{L_{e}(\eta)}{R_{T}} = \begin{cases} A' \left[\ln \left(\frac{8}{\eta} \right) - B' \right], & \eta \leq \eta^{*} \\ c_{1}(1-\eta)^{c_{2}}, & \eta > \eta^{*} \end{cases}$$

$$8 \times 10^{-6}$$

$$6 \times 10^{-6}$$

$$\frac{L_{e} za_{j_{e}}}{L_{i} za_{j_{e}}}$$

$$\frac{L_{e} za_{j_{e}}}{L_{i} za_{j_{e}}}}$$

$$\frac{L_{e} za_{i}}{L_{i} za_{i}}$$

$$\frac{L_{e} za_{i}}{L_{i} za_{i}}}$$

$$\frac{L_{e} za_{i}}{L_{i} za_{i}}$$

$$\frac{L_{e} za_{i}}{L_{i} za_{i}}$$

$$\frac{L_{e} za_{i}}{L_{i} za_{i}}$$

Koeficijenti prilagodbe funkcije induktiviteta

$\frac{L_e(\eta)}{d} = \left\{ A' \left[\ln \left(\frac{8}{\eta} \right) - B' \right], \eta \le \eta^* \right\}$			
R	$c_T \qquad \Big\{ c_1(1-\eta)^{c_2},$	$\eta > \eta^*$	
	j_c	j_0	j_1
$A' [10^{-7} \mathrm{Hm^{-1}}]$	(13.98 ± 0.02)	(13.93 ± 0.02)	(13.95 ± 0.02)
B'	(2.416 ± 0.004)	(2.404 ± 0.004)	(2.409 ± 0.004)
A'/A°	(1.113 ± 0.002)	(1.109 ± 0.002)	(1.110 ± 0.002)
B'/B°	(1.208 ± 0.002)	(1.202 ± 0.002)	(1.204 ± 0.002)
$c_1 [10^{-7} { m Hm^{-1}}]$	(23.7 ± 0.01)	(23.5 ± 0.01)	(23.6 ± 0.01)
c_2	(2.227 ± 0.005)	(2.178 ± 0.005)	(2.197 ± 0.005)
η^*	0.485624	0.487365	0.486743
$\Phi_i / IR_T [10^{-7} \text{WbA}^{-1} \text{m}^{-1}]$	6.339206	10.019046	7.833740
$\eta(\Phi_e \leq \Phi_i)$	0.453015	0.347892	0.406853
$L_i/R_T [10^{-7} \mathrm{Hm}^{-1}]$	$3.172148 \ _{(=\mu_0/4)}$	$6.485828 \ _{(=\mu_0/2)}$	4.826240
$\eta(L_e \le L_i)$	0.593147	0.453015	0.515703

• $A^{\circ} = \mu_0$ (magnetska permeabilnost) i $B^{\circ} = 2 \rightarrow$ koeficijenti za vrlo tanki torus (strujnu petlju)

• zadnja četiri retka prikazuju vrijednosti unutarnjeg toka i induktiviteta.

• $\eta(\Phi_e \leq \Phi_i)$ i $\eta(L_e \leq L_i) \rightarrow \text{omjeri polumjera } \eta = r_T/R_T$ kada su unutarnji tok i induktivitet izjednačeni i postaju veći od vanjskog

25.05.2016.

Zaključak - induktivitet

- izraz induktiviteta tankog torusa odstupa od numeričkog za η ≥ 0.1
 → u proučavanju izbačaja bolje koristiti numerički dobiven izraz
- ostale vrijednosti: slabo ovise o profilu gustoće struje j(r)
- u visokoj koroni tlak plazme i vanjske sile su zanemarive, visoka vodljivost → polje je zamrznuto u plazmi:

 $\Phi_i = konst. i \Phi_e = konst.$

- pokazalo se: $\Phi_i \propto IR_T = konst. \rightarrow I \propto 1/R_T$
- iz $\Phi_e = L_e I = konst. \rightarrow L_e \propto 1/I \propto R_T$
- dobilo se: $L_e = R_T \ln(1/\eta)$ i kako vrijedi $L_e \propto R_T$ tada je: $\ln(1/\eta)$ konstanta proporcionalnosti $\rightarrow \eta = r_T/R_T = konst.$
 - → toroidalna stuktura se rasteže samosuglasno ili proporcionalno
 - → opažačka činjenica za izbačaje (Bothmer and Schwenn, 1998)

25.05.2016.

Model magnetskog užeta

- debela zakrivljena cijev magnetskog toka (magnetsko uže)
- model polja $\mathbf{B} \rightarrow \text{samouravnoteženo}$ za cilindar $\rightarrow \mathbf{F}_{L} = \mathbf{j} \times \mathbf{B} = \mathbf{0}$
 - poliodalno, B_{o}
 - toroidalno (uzdužno), B_{\parallel}
- na uže utječe:
 - vanjsko koronino polje B_c
 - Sunčeva gravitacija
 - Sunčev vjetar stvara MHD "otpor"
- u sistem ulazi vanjski magnetski tok \rightarrow inducira dodatnu struju ΔI

25.05.2016.

"Funkcija pojačanja" $\varepsilon(t)$ i sile

Magnetsko prespajanje povećava vanjski magnetski tok → inducira Δ*I*(*t*) → opisano "funkcijom pojačanja" ε(*t*)

$$\Delta \Phi_e = \Delta I L_e$$

$$\Delta I(t) = \epsilon(t) I_0 \qquad I(\zeta, t) = I_0 \left[\frac{C_1}{l_T(\zeta)} + \epsilon(t) \right]$$

$$\epsilon(t) := \begin{cases} \epsilon_M \sin^2 \left(\pi \frac{t - t_1}{t_2 - t_1} \right), & t_1 < t < t_2 \\ 0, & t \notin [t_1, t_2] \end{cases}$$

- Sačuvanje "namotaja" silnica: $X(\zeta) = \frac{B_{\varphi}(r_T)}{B_{||}(r_T)} = X_0 \frac{C_2 R_T(\zeta)}{l_T(\zeta)}$
- i omjera torusnih polumjera:

 $r_T(\zeta) = \eta R_T(\zeta)$

- → opisuje magnetsku konfiguraciju
 i geometriju magnetskog užeta
- "Magnetske" sile:

-
$$\downarrow$$
 sila tenzije:
 $f_t = -\frac{\mu_0 I^2}{2\pi R_T X^2}$
- \uparrow sila gradijenta mag. tlaka:
 $f_k = \frac{\mu_0 I^2}{4\pi R_T}$
- \uparrow "zrcalne struje":
 $f_{zs} = \frac{\mu_0 I^2}{4\pi H}$

Jednadžba gibanja magnetskog užeta

• ukupno ubrzanje vrha torusa je:

$$\frac{d^2 H(\zeta)}{dt^2} = \frac{\mu_0 I^2(\zeta, t)}{4\pi M} \left[\frac{l_T(\zeta)}{H(\zeta)} + \frac{l_T(\zeta)}{R_T(\zeta)} \left(1 - \frac{2}{X^2(\zeta)} \right) \right] + g(\zeta) + a_c(\zeta, t) + a_d(\dot{\zeta}, \zeta)$$

• gravitacijsko ubrzanje:
$$g(\zeta) = -\frac{g_0}{\left[1 + \frac{H(\zeta)}{r_{\odot}}\right]^2}$$

ubrzanje zbog vanjskog koroninog polja:

$$a_c(\zeta) = -C_3 \frac{I(\zeta, t)}{R_T(\zeta)}$$

• doprinos ubrzanju zbog otpora Sunčevog vjetra

$$a_{d}(\dot{\zeta},\zeta) = -\gamma(H(\zeta)) \left[\frac{dH(\zeta)}{d\zeta} \frac{d\zeta}{dt} - w(H(\zeta)) \right] \left| \frac{dH(\zeta)}{d\zeta} \frac{d\zeta}{dt} - w(H(\zeta)) \right|$$

funkcija "otpora": $\gamma \propto \frac{A\rho}{M}$

25.05.2016.

Primjena modela magnetskog užeta

- Različiti odabiri početne konfiguracije određuju četiri različite kinematike magnetskog užeta:
 - titranje oko ravnotežnog položaja
 - spora evolucija sistema kroz niz kvazi-stacionarnih stanja
 - gubitak ravnoteže
 - gubitak ravnoteže potaknut rekonekcijom
- modelom su opisani sljedeći izbačaji:
 - neuspjeli sistem se relaksira i prigušeno titra
 - spori preuzima ih Sunčev vjetar
 - postupni $a < 100 \text{ m/s}^2$ tijekom vremena od 3-5 sati
 - tipični v ~ 1000 km/s; a < 1000 m/s² tijekom 20-30 minuta
 - impulzivni v ~ 1000-10000 km/s; a < 10000 m/s² tijekom 10 minuta

25.05.2016.

(a) Titranje oko ravnotežnog položaja

Kinematičke krivulje titranja (a)

25.05.2016.

(b) Evolucija sistema kroz niz kvazi-stacionarnih stanja

25.05.2016.

(c) Evolucija sistema kroz niz kvazi-stacionarnih stanja

25.05.2016.

Tomislav Žic

22

(d) Evolucija sistema kroz niz kvazi-stacionarnih stanja

25.05.2016.

(e) Evolucija sistema kroz niz kvazi-stacionarnih stanja

(f) Gubitak ravnoteže na kritičnoj vrijednosti I_o

Kinematičke krivulje gubitka ravnoteže (f)

Pomak kvazi-stacionarnih stanja s povećanjem struje *I*_o

Tomislav Žic

25.05.2016.

27

Ravnotežno stanje i početak rekonekcije

- struja I_0 kontinuirano raste
- sistem polagano prolazi kroz kvazi-stacionarna stanja \rightarrow doseže kvazi-ravnotežno stanje na $H_{eq}/r_{\odot} = 0.2$

- u tom trenutku započinje rekonekcija: $0.2 < H_{eq}/r_{\odot} < 0.75$
- inducira se dodatna struja, ΔI
- daljnjim malim povećanjem *I*₀
 → potpun gubitak ravnoteže
- sistem eruptira

Potpun gubitak ravnoteže rekonekcijom

"Neuspjeli" izbačaj

S=0.2 r_{\odot} ; M=1×10¹² kg; ζ₀=0; η=0.1; $I_0 = 7.8 \times 10^{10}$ A; $X_0 = 4$; $B_{c0} = 1 \times 10^{-4}$ T; $w_{\infty} = 400$ km/s; Γ=1

 rekonekcija nije dovoljno izdašna ili dugotrajna:

 $\Delta I: 0 < t < 10$ h, $\varepsilon_{M} = 0.2212$

- otpor u niskoj koroni naglo zakoči izbačaj
- pada prema ravnotežnom položaju i zatitra

Spori izbačaj

 $S = 0.2 r_{\odot}$; $M = 1 \times 10^{12} \text{ kg}$; $\zeta_0 = 0$; $\eta = 0.1$; $I_0 = 7.8 \times 10^{10} \text{ A}$; $X_0 = 4$; $B_{c0} = 1 \times 10^{-4} \text{ T}$; $w_{\infty} = 400 \,\mathrm{km/s}; \Gamma = 1$

- rekonekcijski tok se neznatno poveća: $\Delta I: 0 < t < 10$ h, $\varepsilon_{M} = 0.23$
- Sunčev vjetar odnosi izbačaj

20

t[h]

30

40

50

Postupan izbačaj

 $S = 0.2 r_{\odot}; \quad M = 1 \times 10^{12} \text{ kg}; \quad \xi_0 = 0; \quad \eta = 0.1;$ $I_0 = 7.8 \times 10^{10} \text{ A}; \quad X_0 = 4; \quad B_{c0} = 1 \times 10^{-4} \text{ T};$ $w_{\infty} = 400 \text{ km/s}; \quad \Gamma = 0.2$

- $\Delta I: 0 < t < 5$ h, $\varepsilon_M = 0.24$
- ubrzava se tijekom dužeg vremenskog perioda
- polagano se uzdiže → tok raste → eruptira → vjetar odnosi

Tipičan izbačaj

S=0.2 r_{\odot} ; M=1×10¹² kg; ζ₀=0; η=0.1; $I_0 = 7.8 \times 10^{10}$ A; $X_0 = 4$; $B_{c0} = 1 \times 10^{-4}$ T; $w_{\infty} = 400$ km/s; $\Gamma = 0.2$

- $\Delta I: 0 < t < 1$ h, $\varepsilon_M = 0.5$
- kraći i jači magnetski pritok → intenzivnije ubrzavanje
- postiže brzinu ~1300 km/s → kasnije: vjetar ga koči

Impulzivan izbačaj

 $S=0.2 r_{\odot}; M=1\times 10^{12} \text{ kg}; \zeta_0=0; \eta=0.1;$ $I_0 = 7.8 \times 10^{10} \text{ A}$; $X_0 = 4$; $B_{c0} = 1 \times 10^{-4} \text{ T}$; $w_{\infty} = 400 \, \text{km/s}; \Gamma = 0.1$

- $\Delta I: 0 < t < 10 \min, \varepsilon_{M} = 1$
- vrlo kratka akceleracijska faza: ~10 min
- $v_{max} \approx 1400$ km/s, $a_{max} \approx 5500$ m/s²

• neometano: za 3 h
$$\rightarrow \sim 20 r_{\odot}$$

Zaključak – inicijacija izbačaja

- prolaskom kroz ograničeni parametarski prostor modela

 → model pogodan za opis i objašnjenje opažačkih rezultata u ranoj
 akceleracijskoj fazi koroninih izbačaja mase
- model je najosjetljiviji na:
 - početnu struju koja teče magnetskim užem I_0
 - dodatno induciranu struju $\Delta I(t) = I_0 \varepsilon(t)$
- nakon određene vrijednosti model je neosjetljiv na promjene početne "usukanosti" magnetskog polja X_0
- model je ovisan i o "globalnim" parametrima: npr. jačini pozadinskog polja korone B_{c0}, brzini Sunčevog vjetra i sl.
 - "globalne" veličine slabo ili sporo se mijenjaju oko srednjih prosječnih opažačkih vrijednosti \rightarrow drže se stalnim
- pogodnije mijenjati "lokalne" parametre, vezanih za svaki pojedini izbačaj: npr. geometrijske parametre ζ_0 , η , struju I_0 , "usukanost" X_0 , masu M, dodatni magnetski pritok ili ekvivalentno ΔI

25.05.2016.

Model MHD otpora (engl. The Drag-Based Model, DBM)

- Model MHD otpora: služi za predviđanje gibanja ICME u heliosferi \rightarrow što je osnovni zadatak prognostike u svemirskom okolišu
- prognostički modeli se mogu podijeliti na:
 - potpuno emiričke/statističke modele a)
 - kinematičko-empiričke modele b)
 - b/c) analitičke (M)HD modele (DBM)
 - potpuno numeričke MHD-modele C)
- Model MHD otpora se oslanja na činjenice da na velikim heliocentričnim udaljenostima:
 - Lorentzova sila trne (u visokoj koroni) —
 - dinamika ICME samo počiva na međudjelovanju sa Sunčevim vjetrom (okolinom) ← opažačke činenice:
 - brz CME \rightarrow usporava spor CME \rightarrow ubrzava $\begin{cases} v \rightarrow w \end{cases}$
 - u nesudarnom okruženju: —
 - niska je viskoznost
 - niska rezistivnost → disipativni procesi su zanemarivi
 - impuls i energija se prenose magnetoakustičnim valovima

25.05.2016.
Međuplanetarno gibanje - MHD "otpor"

• na udaljenosti većoj $R \ge 15 r_{\odot}$, ukupno ubrzanje ovisi samo o sili MHD "otpora":

$$a = (a_L - g - a_c) + a_d$$

 otpor nastaje zbog zbog prijenosa impulsa i energije između izbačaja i Sunčevog vjetra:

$$\ddot{R}(t) = -\gamma(R)[\dot{R}(t) - w(R)]|\dot{R}(t) - w(R)|$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_2}{R^2} + \frac{k_4}{R^4} + \frac{k_6}{R^6} \text{ za } R > 1.8$$

$$= \frac{k_4}{R^2} + \frac{k_6}{R^6} + \frac{k_6}$$

Perturbacije u Sunčevom vjetru

- neperturbirani Sunčev vjetar: stacionaran i izotropan
 - slijedi iz očuvanja toka gustoće (jednadžbe kontinuiteta)
- neperturbirani Sunčev vjetar:

POTREBNO:
$$w(R), w_{\infty}, \gamma_{\infty}$$

54

$$w_{0}(R) = w_{\infty} \left(1 + \frac{k_{4}/k_{2}}{R^{2}} + \frac{k_{6}/k_{2}}{R^{4}} \right)^{-1} \left[w_{\infty} = \lim_{R \to \infty} w_{0}(R) \right]$$

• ukupni Sunčev vjetar (neperturbirani, $w_0 + perturbirani član, w_p$):

Tomislav Žic

$$w(R) = \begin{cases} w_0(R) + w_p(R), R_1 \le R \le R_2 \\ w_0(R), \text{ inace} \end{cases} + \text{"Konusna} \text{geometrija":} \\ A \propto R^2 \end{cases}$$
$$y(R) = y_{\infty} \frac{w_{\infty}}{w(R)}; \quad n(R) = \frac{k_2}{R^2} \frac{w_{\infty}}{w(R)} \qquad \begin{bmatrix} y_{\infty} = \Gamma \times 10^{-7} \text{ km}^{-1} \end{bmatrix} \\ \begin{bmatrix} y_{\infty} = \lim_{R \to \infty} \gamma(R) \end{bmatrix}$$

• vodi do:

25.05.2016.

Model "otpora" s konstantnim γ_{∞} i w_{∞}

• nakon
$$R > 20$$
: $w(R) \approx w_{\infty}$, $\gamma(R) \approx \gamma_{\infty}$
 $\dot{v}(t) = -\gamma_{\infty} [v(t) - w_{\infty}] |v(t) - w_{\infty}|$

- Dva slučaja riješivosti jednadžbe:
 - izbačaj brz: $v(t) > w_{\infty} \rightarrow$ opada i asimptotski se približava w_{∞}
 - izbačaj spor: $v(t) < w_{\infty}$ → brzina raste i doseže brzinu w_{∞}

25.05.2016.

Tranzitne vrijednosti $\tau(v_0)$, $v_{\tau}(v_0)$ za zadani w_{∞}

- izračunate krivulje ovisnosti tranzitnog vremena $\tau(v_0)$ i brzine $v_{\tau}(v_0)$ o početnoj v_0 brzini izbačaja
- različite asimptotske brzine Sunčevog vjetra w_{∞} (pokraj linija)
- iste kutne širine $\Theta = 1$ rad i mase $M = 10^{12}$ kg
- krivulja tranzitnog vremena τ(v₀) gotovo da se ne mijenja povećanjem brzine v₀
- tranzitna vremena su veća za male $w_{\infty} \rightarrow$ vjetar odnosi izbačaj sa sobom
- brzina Sunčevog vjetra manja → izbačaj duže putuje do Zemlje
- Zaključak: za navedeni skup parametara tranzitno vrijeme τ više ovisi o brzini Sunčevog vjetra, w_∞, nego o početnoj brzini izbačaja, v₀

40

Tranzitne vrijednosti $\tau(w_{m})$, $v_{\tau}(w_{m})$ za zadani v_{0}

- ovisnost tranzitnog vremena τ(w_∞) i
 brzine v_τ(w_∞) o promjeni asimptotske
 vrijednosti brzine Sunčevog vjetra w_∞
- krivulje se razlikuju prema početnoj brzini izbačaja v₀ (vrijednost uz krivulju)
- nagib krivulja i velik Γ → τ(w_∞) i
 v_τ(w_∞) su osjetljiviji na promjenu
 brzine Sunčevog vjetra w_∞
- grupiranje krivulja $\rightarrow \tau(w_{\infty})$ i $v_{\tau}(w_{\infty})$ su neosjetljivi na promjenu brzine v_0
- Zaključak: brzina v_0 je bitna tek kod vrlo masivnih izbačaja (ili kod uskih koji se gibaju u plazmi niske gustoće)

Tranzitne vrijednosti $\tau(v_0)$, $v_{\tau}(v_0)$ za zadani Γ

- ovisnost tranzitnih veličina $\tau(v_0)$ i $v_{\tau}(v_0)$ o početnoj v_0 i kutnoj širini Θ (zapisanoj uz krivulje)
- asimptotska brzina Sunčevog vjetra je konstantna: $w_{\infty} = 400$ km/s
- sve krivulje se približno sijeku u $\tau(v_0 = w_{\infty}) \approx 100$ h:
- → nema razlike između brzine izbačaja i Sunčevog vjetra
- \rightarrow sila MHD otpora je vrlo mala ili iščezava
- \rightarrow izbačaji se gibaju brzinama koje približno slijede brzinu Sunčevoj vjetra w(R)
- $za |v w| > 0 \rightarrow gibanje izbačaja postaje$ $osjetljivo na kutnu širinu <math>\Theta$
- Zaključak: $\tau(v_0)$ i $v_{\tau}(v_0)$ uskih izbačaja osjetljivija na v_0 , nego što su kod širokih

Tranzitne vrijednosti $\tau(\Theta)$, $v_{\tau}(\Theta)$ za zadani v_{0}

- Sažeto: ovisnost tranzitnih vremena i brzina o kutnoj širini izbačaja Θ
- krivulje se razlikuju prema početnim brzinama izbačaja v₀
- brzina Sunčevog vjetra iznosi $w_{\infty} = 400 \text{ km/s}$
- krivulje se stapaju za $\Theta \gg 1$ $(M \ll 1) \rightarrow \tau(\Theta), v_{\tau}(\Theta)$ ne ovise o početnoj v_0
- Zaključak: brzina v_0 bitna samo kod $\Theta \ll 1$ (uskih) i $M \gg 1$ (masivnih) izbačaja (ili općenito onih s $\Gamma \ll 1$)

Model s konstantnim γ_c , w_c - primjeri

25.05.2016.

Raspodjele w_{∞} i Γ iz opažačkih podataka

- iz skupa $\{r_0, v_0, \tau, v_\tau\} \rightarrow \{\Gamma, w_\infty\}$
- izračunate raspodjele w_∞ i Γ iz opažačkih {r₀,v₀,τ,v_τ} podataka Schwenn et al. (2005) i Manoharan (2006)
- aritmetičke sredine distribucija:

$$- \overline{\Gamma} = (1 \pm 0.6)$$

$$-\overline{w}_{\infty} = (470 \pm 190) \text{ km/s}$$

• medijani:

- Me(
$$\{\Gamma\}$$
) = 0.8

- Me($\{w_{\infty}\}$) = 410 km/s
- raspodjela parametra Γ je nagnuta prema manjim vrijednostima
- nije nađena nikakva korelacija između Γ
 i w_∞

25.05.2016.

Aritmetička sredina i nepozdanost skupa $\{\Delta \tau\}$

25.05.2016.

- Cilj: pronaći kombinaciju Γ i w_{∞} za fiksne $R_0 = \overline{R}, v_0 = \overline{v}$ iz Schwenn et al. (2005) uzorka, kada $\Delta \tau = (\tau_0 - \tau) = 0$ h → sjecište krivulje s apscisom
- Rezultat: za bilo koju brzinu Sunčevog vjetra w_∞ → standardna devijacija opada porastom Γ i minimalna je za Γ ≥ 1
- optimalne vrijednosti su:
 - $w_{\infty} = 500 550 \text{ km/s}$

- $\Gamma \approx 1$

Raspodjela uzorka za $\Gamma = 1$ i $w_{\infty} = 500$ km/s

 iz prijašnje raspodjele prosječne vrijednosti se kreću oko:

 $\Gamma = 1$ i $w_{\infty} = 500$ km/s

- → primjenjene s $R_0 = R_N$ i $v_0 = v_N$ iz uzorka Schwenn et al. (2005) i Manoharan (2006)
- \rightarrow raspodjela razlika opaženog i tranzitnog vremena $\Delta \tau$
- za 55% izbačaja je $|\Delta \tau| < 12$ h
- više od 85% izbačaja je $|\Delta \tau| < 1$ d

Zaključak:

- najbolja prognostika za $w_{\infty} = 500$ km/s
- tijekom minimuma: $w_{\infty} = 300 400 \text{ km/s}$
- za ekvatorijalnu koroninu šupljinu: $w_{\infty} = 500 - 600 \text{ km/s i smanjiti } \Gamma$

Primjena na pojedinačni izbačaj 12.12.2008.

- upotreba modela s konstantnim: $w(R) = w_{\infty} = konst.$ $\gamma(R) = \gamma_{\infty} = konst.$
- izbačaj vrlo naglo ubrzava do udaljenosti $R \approx 23$
- postiže visoku brzinu od 740 km/s
- kasnije počinje usporavati
- Model dobro opisuje deceleraciju pomoću:
 - $\Gamma = 2, w_{\infty} = 350 \text{ km/s},$
 - $R_0 = 20, v_0 = 620 \text{ km/s}$
- LASCO/SoHO katalog: "slab" izbačaj → visoka vrijednost Γ

Zaključak – propagacija izbačaja s w = konst.

- Tranzitno vrijeme *τ* međuplanetarnog koroninog izbačaja mase ponajviše ovisi o:
 - početnoj brzini, v₀
 - masi, <u>M</u>
 - širini, Θ
 - brzini i gustoći Sunčevog vjetra, w(R) i n(R)
- dva bitna granična slučaja:
 - − izbačaj male gustoće → τ prvenstveno je određeno w(R)
 - izbačaj velike gustoće $\rightarrow \tau$ ovisi o v_0
- $\tau < 1 \text{ d} \rightarrow \text{izbačaji s } v_0 > 2000 \text{ km/s u vjetru s } n(R) \ll 1$
- statistička analiza opažačkih podataka i model s $\gamma(R) = \gamma_{\infty} = konst$. i $w(R) = w_{\infty} = konst$.
 - → optimalne vrijednosti:
 - $\Gamma \in [0.2, 2], (\gamma_{\infty} = \Gamma \times 10^{-7} \, \text{km}^{-1})$
 - $w_{\infty} = 500 \text{ km/s}$
 - $\sigma(\tau) \approx 1/2 \text{ d}$

Konusne geometrije ICME

DBM s *w* = *konst*. i samousuglašenom CME ekspanzijom

- Sunčev vjetar, *w*:
 - izotropan i konstantan
 - parametar y je također konstantan
- "samousuglašeno" (SS) CME širenje:
 - početni konusni oblik CME-a je sačuvan tijekom njegovog širenja u međuplanetarnom prostoru
- za zadan skup ulaznih parametara model računa propagaciju ICME-a od Sunca do odabrane "mete":
 - tranzitno vrijeme
 - dolatni datum
 - udarnu brzinu

Osnovni izračun (*w=konst.* & SS-širenje) (http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

Napredniji uzračun (*w=konst.* & SS-širenje) (http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

Rezultat izračuna (w=konst. & SS-širenje) (http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

Forecasting the Arrival of ICMEs: The Drag-Based Model with constant solar wind speed and self-similar CME expansion

Results Kinematic plot CME geometry plot Documentation

Output:

CME arrival at target (date & time): 14.04.2016 at 18h:12min Transit time: 50.20 h Impact speed at target (at 1 AU): 634 km/s

Input parameters:

CME take-off date & time: 12.04.2016 at 16h:00min $y = 0.2 \times 10^{-7} \text{ km}^{-1}$, w = 450 km/s, $R_0 = 20 r_{Sup}, v_0 = 1000 \text{ km/s}, \lambda = 30^\circ, \varphi_{CME} = 0^\circ$ $R_{target} = 1 \text{ AU}, \varphi_{target} = 0^{\circ}$

Calculated in 3.15 seconds.

Prikazi izračuna (*w=konst.* & SS-širenje) (http://oh.geof.unizg.hr/~tomislav/CDBM-SS/)

↑GORE:

Kinematika '+ CME' segmenta u ekliptici

← LIJEVO: Širenje presjeka CME-a u ekliptici

25.05.2016.

Primjena DBM s *w=konst.* i SS-širenjem na međunarodnim stranicama za prognostiku

Opservatorij Hvar - Forecasting the Arrival of ICMEs: http://oh.geof.unizg.hr/DBM/dbm.php

Forecasting the Arrival of ICMEs: The Drag-Based Model		
Basic DBM Advanced DBM Documentation		
CME take-off date :	Apr 🗸 8 🖌 2016 🖩	
CME take-off time (UTC):	16 v h 47 v min	
${f R_0}$ - starting radial distance of CME (R _s)	20	
v_0 - speed of CME at R_0 (km/s)	1000	
Γ - drag parameter (10 ⁻⁷ km ⁻¹)	0.1	
w - asymptotic solar wind speed (km/s)	450	
R_{target} - target heliocentric distance (AU)	1	
Calculate Reset!		
Drag-Based Model has performed 3254 successful calculations (since 26.12.2012).		
Opservatorij Hvor Vier Observatori Vier Observatori		
© Hvar Observatory, 2014		

Primjena DBM s *w=konst.* i SS-širenjem na međunarodnim stranicama za prognostiku

The COMESEP alert system: http://www.comesep.eu/alert/

You are here: Home + Alert System Help + Help + System overview

Main Menu	System overview
= Home	9 🖬
Project Description	The COMESEP alert system consists of a network of alert tools connected to a central node in charge of
Consortium	1. dispatching the alerts among the different tools,
Alert System	 presenting a survey of the current alerts to the users, a bin the next shaft.
Alert System Help	 archiving the past alerts.
News	 The data exchange between the central node and the different tools is implemented through SOAP web service using standardized messages (based on OASIS WS-Notification specification). Each tool sends alert
Publications	messages to the central node which both presents the alerts to the users and redirects the messages to the
Meetings	appropriate tools.
Jobs	The figure hereunder is a flow diagram of how the different tools interact with each other through the three locale of the COMESED elect matters:
Links	levels of the COMEDEP alert system.
Frequently Asked Questions	Trist level producers Tools that are both consumers and producers
Consortium Members Only	3. Alerts
	Flow diagram of the tools used in the COMESEP alert system.

Primjena DBM s *w=konst.* i SS-širenjem na međunarodnim stranicama za prognostiku

ESA Expert Service Center for Solar & Heliospheric Weather: http://swe.uni-graz.at/index.php/services/cme-forecast

Primjena DBM s *w=konst.* i SS-širenjem na međunarodnim stranicama za prognostiku

NASA Space Weather Research Center – CME Arrival Time Scoreboard:

http://swrc.gsfc.nasa.gov/main/cmemodels

25.05.2016.

Primjena DBM s *w=konst.* i SS-širenjem na međunarodnim stranicama za prognostiku

NASA Space Weather Database Of Notifications, Knowledge, Information (DONKI): http://kauai.ccmc.gsfc.nasa.gov/DONKI/


```
25.05.2016.
```

DBM s heliocentričnom funkcijom w(R) i izravnjavanjem vodećeg luka CME-a

- Sunčev vjetar, w:
 - ovisi o heliocentričnoj udaljenosti
 R: *w*(*R*)
 - − → parametar γ postaje također ovisan o heliocentričnoj udaljenosti: γ(R)
- svaki segment vodećeg luka (VL) CME-a giba se nezavisno
 - → početna konusna konfiguracija se izravnava
 - → suglasno s opažačkom činjenicom

Prikazi izračuna (za w(R) i izravnjavanje VL) (http://oh.geof.unizg.hr/~tomislav/DBM/)

- LIJEVO: Širenje presjeka CME u eklitici
- **DESNO:** Kinematika '+ CME' segmenta u ekliptici

Rezultat:

- Dolazak CME do odabranog položaja (datum): 14.04.2016 u 18h:20min
- Vrijeme putovanja: 50.35 h
- Udarna brzina (at 1 AU): 633 km/s

Ulazni parametri:

- Vrijeme početka erupcije: 12.04.2016 u 16h:00min
- $\gamma_{\infty} = 0.2 \times 10^{-7} \text{ km}^{-1}, w_{\infty} = 450 \text{ km/s},$
- $-R_0 = 20 r_s, v_0 = 1000 \text{ km/s},$ $\lambda = 30^{\circ}, \varphi_{\text{CMF}} = 0^{\circ}$
- $R_{\text{target}} = 1 \text{ AU}, \varphi_{\text{target}} = 0^{\circ}$

Izračunato za 13.48 sekundi.

25.05.2016.

Primjer integracije DBM + ENLIL modela (http://oh.geof.unizg.hr/~tomislav/DBM-ENLIL/)

- LIJEVO: Presjek gibanja vodećeg luka CME-a u ekliptici. Erupcija započinje: 10. veljače 2009. u 06:13 UT.
- DESNO: Kinematika '+ CME' segmenta prema "meti" (Marsu).

Općeniti model: w(R), $\gamma(R) \rightarrow$ pozadniski Sunčev vjetar intenzivno utječe na širenje CME

- parametar: $\Gamma = 0.2$
- početna CME udaljesnot: $R_0 = 31 r_s$
- početna brzina CME-a: $v_0 = 1000 \text{ km/s}$
- kutna poluširina CME-a: $\lambda = 60^{\circ}$
- početna longituda erupcije CME-a: $\varphi = 150^{\circ}$
- "meta": Mars

25.05.2016.

Minimizacija kvadratnog odstupanja

- ULAZNI parametri: skup vrijednosti opaženih ICME položaja i brzina {(*R*₀,*v*₀),...,(*R*_N,*v*_N) }
- IZLAZNI parametri: DBM vrijednosti (Γ, w_∞, R₀, v₀)
- Metodom minimizacije kvadratnog odstupanja (engl. *the least-square fitting*):
 - uzastopnom varijcijom DBM parametara
 → minimalno odstupanje između opaženih
 v_i i izračunatih vrednosti brzina v(R_i) DBM
 metodom:

$$\sigma(\Gamma, \boldsymbol{w}_{\infty}, \boldsymbol{R}_{0}, \boldsymbol{v}_{0}) = \sqrt{\frac{1}{(N+1)} \sum_{i=0}^{N} [\boldsymbol{v}_{i} - \boldsymbol{v}(\boldsymbol{R}_{i})]^{2}}$$

 $\rightarrow \sigma_{\min} \rightarrow$

→ najbolji skup DBM vrijednosti: (Γ , w_{∞} , R_0 , v_0)

 pogodno za svemirsku prognostiku u realnom vremenu: uzastopnim prilagođavanjem DBM krivulje podacima kako ICME propagira

64

25.05.2016.

Zaključak – općenita DBM propagacija izbačaja

- Pogodnosti modela MHD otpora (The Drag-Based Model DBM):
 - jednostavan je, brz i prilagodljiv različitim situacijama
 - njegova točnost nije bitno lošija u usporedbi s drugim "naprednijim" modelima (Vršnak et al., 2014)
 - prilagođen je brzom proračunu svemirske prognostike u realnom vremenu (Žic et al., 2015)
- Nedostaci:
 - magnetsko polje i Lorentzova sila nije uključena u model
 - CME-CME međudjelovanje je problematično za proračun
 - DBM nije potpuno prilagođen uporabi u kompleksnom i turbulentnom heliospefrskom okolišu
 - Hoće li DBM + ENLIL integracija dati bolje prognostičke rezultate?

Primjer na STEREO-A i STEREO-B podacima

25.05.2016.

CME-CME međudjelovanje

25.05.2016.

Numerički izračun

25.05.2016.

- VAC (Versatile Advection Code)
 - MHD, 2.5-D [f(x,y); $B = B_z$], $\beta = 0$, Sunčev vjetar je u sustavu mirovanja
 - okolina: jednoliko polje: $B_0 = 1$, $\rho_0 = 1$, v = 0_ (CME se giba u Sunčevom vjetru)

 $\rho = 2$

Tomislav Žic

1)

2)

Udarni val nalijeće na "gusti" CME

25.05.2016.

Udarni val nalijeće na "rijetki" CME

25.05.2016.

6

2

0

0.1

0.2

0.3

0.4

0.5

х

0.6

0.7

Tomislav Žic

11 0.005 +

8.3682]

1]

1

+ [0.135 9.0989]

+ [0.435 1]

+[0.475 + [0.495 [0.515

+[0.535 1] [0.555 1]

+ [0.575 11

0.8

[0.245 15 4607] [0.275 15.4108

0.605

0.9

CME-CME međudjelovanje

2c) direktni nalet

2d) bočni nalet

25.05.2016.

Udarni val → CME (gušći i rijeđi)

25.05.2016.
CME → CME (direktni i bočni sraz)

25.05.2016.

Tomislav Žic

Zaključak - CME međudjelovanja

- nove era satelita za opažanje Sunce (npr. STEREO-A i -B) pokazala a su međudjelovanje između više CME-a češća nego što se mislilo
- potrebno nadograditi DBM model na osnovu numeričkih računa kako bi ugrubo uključio i posljedične efekte CME međudjelovanja
- očigledno, ovisno o masama ovisan im i sraz CME
- mase CME (odnosno y parametre moguće je odrediti) iz početne kinematike ("automatskom prognostikom")
 - \rightarrow dobiti γ parametre nakon sraza
 - − → odrediti novu kinematiku CME-a

Hvala na pažnji!

Tomislav Žic