SHOCK MAGNETIC STRUCTURE FOR A TYPE II RADIO BURST

Su Wei1,2,3, Li Tom2, Cheng Xin2, Chen Pengfei2, Feng Li3, Guo Yang2, Li Dong3, Ding Mingde2, Wang Yan1

1MOE Key Laboratory of Fundamental Physical Quantities Measurements \& Huber Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei Province 430074, China

2Key Laboratory for Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210023, China

3Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Nanjing 210008, China

Coronal shocks are magnetohydrodynamic shocks that can happened ubiquitously and closely to human beings, type II radio bursts are the radio signature of the coronal shocks. What magnetic conditions are needed for the generation of type II radio bursts is still puzzling us. Here, we study a type II radio burst, whose corresponding coronal is observed by the Solar Dynamics Observatory and the Solar Terrestrial Relations Observatory in extreme-ultraviolet bands at three different positions. Based on the extreme-ultraviolet observations, we reconstruct the 3 dimension shock surface. Combined with the Nancay Radio Heliograph observations and the coronal magnetic field extrapolation model, the shock magnetic condition for the source region of the type II radio burst is given: the type II radio burst is generated by a quasi-parallel shock. We also use Rankine-Hugoniot relations to describe the coronal shock at the source region of the burst.