The emergence of active regions (ARs) leads to various dynamic activities, whose details have been rarely reported. Using high-resolution and long-lasting Hα observations from the New Vacuum Solar Telescope, we report the dynamics of NOAA AR 12700 in its emerging phase on 26 February 2018 in detail. In this AR, constant tether-cutting reconnections between emerging fibrils and preexisting ones were detected. Driven by the flux emergence, small-scale fibrils observed in Hα wavelength continuously emerged at the center of the AR and reconnected with the ambient preexisting fibrils, forming new longer fibrils. We investigate three scenarios of such tether-cutting reconnection in two hours. Specially, the third scenario of reconnection resulted in the formation of longer fibrils that show pronounced rotation motion. To derive the evolution of the magnetic structure during the reconnections, we perform nonlinear force-free field (NLFFF) extrapolations. The extrapolated three-dimensional magnetic fields clearly depict a set of almost potential emerging loops, two preexisting flux ropes at 03:00 UT before the second reconnection scenario, and a set of newly formed loops with less twist at 03:48 UT after the third reconnection scenario. All of these extrapolated structures are consistent with the fibrils detected in Hα wavelength. Based on the aforementioned observations and extrapolation results, we propose that the constant tether-cutting reconnections resulted in that the magnetic twist was redistributed from preexisting flux ropes towards the newly-formed system with longer magnetic structure and weaker twist.