INVESTIGATIONS OF SUPRA-ARCADE FAN AND TERMINATION SHOCK ABOVE THE TOP OF THE FLARE LOOP SYSTEM OF THE 2017 SEPTEMBER 10 EVENT

Qiangwei Cai1,2,3, Chengcai Shen4, John C. Raymond4, Zhixing Mei1,3, Alexander Warmuth5, Jun Lin1,2,3

1Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650216, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Astronomical Mega-Science, Chinese Academy of Sciences, Beijing 100012, China
4Harvard-Smithsonian Center for Astrophysics, 60, Garden Street, Cambridge, MA, 02138, USA
5Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

On 2017 September 10, a major eruption on the west solar limb produced a class X-8.2 flare and a superfast coronal mass ejection (CME). During the eruptive process, the geometric topology of the disrupting magnetic configuration presented a clear flare-current sheet (CS)-CME structure. Analyzing the images and spectral data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and the Interface Region Imaging Spectrograph (IRIS), we studied the supra-arcade fan (SAF) region between the bottom of CS and the top of flare loops in the south part of the disrupting configuration. Our results indicated that the SAF contained hot plasma of temperature up to 10^7 K and electron density of $2.63 \cdot 10^9$ cm$^{-3}$, and the fast variation component (FVC) of the SAF light-curve shown by the IRIS slit-jaw images (SJI) displayed a quasi-periodic oscillating feature with the period of 1.28 min. We utilized the ATHENA code to simulate detailed evolutionary features of the magnetic structure of a typical two-ribbon flare. The numerical experiments duplicate observational features in many respects, including the spatial distribution and evolution in structures of the plasma and magnetic field, the turbulence and the termination shock (TS) in the SAF. Our results suggest that the SAF should be a high temperature structure that possibly contains the TS.