We adopt our filament automated detection method to process the full disk Hα data mainly obtained by Big Bear Solar Observatory and Kanzelhöhe Observatory from 1973 to 2018, spanning nearly five solar cycles. The butterfly diagrams of the filaments, showing the information of the filament area, spine length, tilt angle, and the barb number, are obtained. The variations of these features with the calendar year and the latitude band are analyzed. The drift velocities of the filaments in different latitude bands are calculated and studied. We investigate the north-south asymmetries of the filament numbers in total and in each subclass classified according to the filament features. The chirality of filaments, featured by the quantitative measure of chirality as a percentage of left-bearing (right-bearing) barbs associated with a given filament, are also studied. We find that the larger the filaments (with relatively more barbs) are, the higher the percentage is in accordance with the hemispheric helicity rule.