ELLERMAN BOMBS: OBSERVATIONS AND SIMULATIONS

Jie Hong1,2, M. D. Ding1,2, Cheng Fang1,2

1School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China
2Key Laboratory for Modern Astronomy and Astrophysics, Nanjing University, Ministry of Education, Nanjing 210023, China

Ellerman bombs (EBs) are short-lived, small-scale solar activities that occur in or near active regions. In this talk, we will show recent observations and simulations of EBs. The GST/FISS and IRIS observations show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in Hα, Ca II 8542 Å, and Mg II triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Considering these particular features, we propose a two-cloud model to fit the observed line profiles and find a temperature increase of 600-2300 K in EBs relative to the quiet Sun. Radiative hydrodynamic simulations of EBs using both non-thermal and thermal models can generate line profiles that are similar to observations. However, in non-thermal models we find dimming in the Hα line wings and continuum when the heating begins, while for the thermal models dimming occurs only in the Hα line core, and with a longer lifetime. This difference in line profiles can be used to determine whether an EB is dominated by non-thermal heating or thermal heating. We will also talk about the relation of EBs and UV bursts.