FLUX ROPE FORMATION BY A CONFINED SOLAR FLARE PRECEDING A CORONAL MASS EJECTION

Bernhard Kliem1, J. Lee2, R. Liu3, S. M. White4, C. Liu5, S. Masuda6

1Institute of Physics and Astronomy, University of Potsdam, Germany
2SDU, Shandong, China
3USTC, Hefei, China
4AFRL, Albuquerque, NM, USA
5NJIT, Newark, NJ, USA
6Nagoya University, Japan

Two categories of onset mechanism for solar eruptions (coronal mass ejections [CMEs], filament or prominence eruptions, and flares) are currently being debated. Ideal MHD mechanisms suggest the instability of a magnetic flux rope, thus, must assume that a flux rope exists at eruption onset. Reconnection mechanisms assume that a (not yet verified) mechanism of self-amplifying magnetic reconnection commences in a sheared magnetic arcade, triggering and driving the eruption and forming a flux rope as a result. Here we analyze an eruption event which strongly indicates that a magnetic flux rope was formed prior to a major CME by a preceding confined flare (i.e. a flare not associated with a CME). We also present evidence that such flux-rope-forming precursor flares often occur prior to CMEs, which lends support to the ideal MHD mechanism for solar eruptions.