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Short-term studies
opportunity to test GCR-cloud hypothesis

• Short-term changes in cosmic rays (Forbush decreases) are comparable 
to variations during the solar cycle. 

• Advantages: some important unwanted factors that influence long-therm 
studies are removed (ENSO, vulcanic eruptions, satellite calibration errors)

• Disadvantages: Meteorological variability (noise) in clouds has to be 
reduced to be able to detect the solar-related changes (signal), limited
number of high-magnitude Forbush decreases (several pro cycle)
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Čalogović et al., 2010 (GRL)

Analysis of ISCCP cloud cover during 6 
biggest Forbush decreases (1989-1998) 

• Forbush events with decreases in 
CR flux > 9 % 

• calculated cosmic ray induced 
ionization rate (GEANT4, 
2.5°x2.5°)

• independent correlation analysis 
of all grid cells for each lag (10 
days)  

• in total 8.6 milion correlations 
calculated 



Results
Čalogović et al., 2010 (GRL)

Low clouds (0-3.2 km), Fd 1

• No siginificant corrleations found in all 6 
Forbush events together, in analysis of 
individual events or cloud layers (low, 
middle, high cloud cover) 

• No significant diferences for obtained 
correlations in different areas (low and 
high latitudes, land, oceans) 

• Method is enough sensitive to detect 
global cloud changes

GLOBAL	AVERAGE	
CORRELATION

SENSITIVITY	
TESTS



Short-term studies using Forbush 
decreases show conflicting results

• positive correlations:
Tinsley & Deen, 1991;  Pudovkin & Vertenenko, 1995; Todd & Kniveton, 
2001; 2004; Kniveton, 2004; Harrison & Stephenson, 2006; Svensmark
et al., 2009; Solovyev & Kozlov, 2009; Harrison & Ambaum, 2010; 
Harrison et al. 2011; Okike & Collier, 2011; Dragić et al. 2011; 2013; 
Svensmark et al., 2012; Zhou et al. 2013; Aslam & Badruddin, 2015

• negative correlations: 
Wang et al., 2006;  Troshichev et al., 2008 

• no correlations or inconclusive results:
Pallé & Butler, 2001; Lam & Rodger, 2002 ; Kristjánsson et al., 2008 ; 
Sloan & Wolfendale, 2008; Laken et al., 2009; Čalogović et al., 2010; 
Laken & Kniveton 2011; Laken et al., 2012; Erlykin and Wolfendale, 2013



Possible reasons

• there is no relationship between cosmic rays and 
clouds

• a relationship is too weak to detect (signal to noise 
ratio) 

• other solar parameters may interfere with the results 
(e.g. TSI, UV) – a problem with signal attribution 

• relationship exists but it is constrained by the 
atmospheric conditions at the time



How to isolate the signal using composites?

• Successive averaging of events (in time or space)
• Used to increase signal-to-noise ratio (SNR)
• Enable detection of small amplitude signal against large variability

Superposed epoch analysis or conditional sampling



Cosmic ray
(CR) flux

TSI

ISCCP cloud cover

TSI influences the cloud cover?

• Composite (superposed epoch) 
analysis of 123 Forbush decrease 
events
• cloud cover decreases about 2 
days before the onset of Forbush
decrease (CR flux)

Laken et. al., 2011 (JGR)



TSI data and composite samples

• Active Cavity 
Radiometer Irradiance 
Monitor (ACRIM) 
reconstruction, 1978-
present, daily values

• 3 composite samples:
• largest increases in 
TSI (19 events)
• largest decreases 
in TSI (48 events)
• largest decreases 
in TSI without 
significant CR 
variations (37 
events)

Laken & Čalogović, 2011 (GRL)



GCR and F10.7 (EUV) composites

GCR

UV

• CR flux data – Climax 
neutron monitor 
(Rc=2.99GeV)

• F10.7 (2800Mhz) data –
proxy of extreme 
ultraviolet solar activity 
(EUV) 

• all composites (TSI, CR, 
F10.7) correlated with 
corresponding  cloud 
data using a lag of 20 
days



Cloud data

• International Satellite Cloud 
Climatology Project (ISCCP) D1 
dataset, IR data,  1983-2008, 
temporal resolution 3h, equal-area 
grid (280x280km2)

• 3 different altitude levels: high 
(>6.5km), middle (3.2 – 6.5km) and 
low (0 – 3.2km) clouds

• daily averaged

• area-averaging was applied for different regions:
• global
• low latitudes (<45°)
• high latitudes (>45°)
• regions over land
• regions over ocean



Monte Carlo tests  

• employed to establish the threshold significance values for the 
correlation coefficients (r)

• for each parameter 100 000 randomly generated r 

• Shapiro-Wilk test of 
normalcy: all r are 
normally distributed 
(W = 0.996, p = 
4.8x10-10)

• statistical significance 
set by two-tailed 0.95 
percentile MC 
generated r values



Cloud composites – low and high latitudes

• no 
significant 
correlations 
with TSI, 
CR and UV 
composites

La
ke
n
&
	Č
al
og
ov
ić
,	2
01

1	
(G
RL
)



Cloud composites – ocean and land

• no 
significant 
correlations 
with TSI, 
CR and UV 
composites
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If some climate signal is found - it should 
be properly attributed to solar forcing 

temperature

Volcanic	forcing

Solar	forcing
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• Other external and internal factors influencing the climate parameters should 
be identified → eg. attribution by multiple regression or models (if possible)

• Last few solar cycles coincidentally match with strong volcanic eruptions
(Agung, El Chicon, Pinatubo - volcanic forcing)

• Chiodo et al., 2014 (ACP): using 45 yr of data, a robust 11 yr solar signal can 
only be extracted above 10 hPa (WACCM3.5). Longer records required at lower 
levels, because solar and volcanic signals cannot be adequately separated.



Solar—terrestrial links and 
some (bad) analysis examples

How improper data handling or statistical tools can lead to 
misleading or erroneous results with possible (bad) implications

Ex
am

pl
e 

1 Friis-Christensen & Lassen, 1991 (Science)
The solar cycle length is closely associated with climate (global land air 
temperature)
Due to incorrect handling of the physical data (filtering) wrong conclusions are 
presented. Laut, 2003 (JASTP)
Original figure can be still found in many textbooks and climate skeptics use it 
as argument against global warming!



Solar—terrestrial links and 
some (bad) analysis examples

Example 2
Svensmark & Friis-Christensen, 1997 (JASTP); Svensmark, 1998
Total cloud cover strongly correlates with galactic cosmic ray (GCR) flux 

Authors use completely different cloud datasets NIMBUS-7 CMATRIX (triangles), 
ISCCP (squares) and DMSP data (diamonds) to obtain spurious correlation with 
GCR 



Possible methodological reasons
for conflicting results

• unappropriate or no data filtering 
 

• wrong statistical assumptions and/or improper use of 
statistical tools  
 

• “quality” and properties of cloud datasets 
(autocorrelated data)

So how to test the CR-cloud link reliably ?



Cosmic ray flux and cloud data

Global and daily 
averaged ISCCP D1
(IR-detected) cloud
cover (%)

Daily averaged 
normalized cosmic 
ray flux (%)
calculated from 
Climax Colorado and 
Moscow neutron 
monitors
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... to minimize variations in data unconnected with hypothesis 
testing (high-pass filtering)

Composites should be made with anomalies 
rather than raw data...

Differences (b), 
indicates remaining 
non-linear variations 
in composite from 
synoptic scale 
variability. If not 
removed, this will 
bias results of 
composites. 

Comparision of two methods to remove long-term variations (n=20): linear trends 
removed (black), and a only 21-day running mean removed

one random composite over t±40 100,000 composites at t0

Proper selection of 
smooth filter width is 
needed to prevent 
signal attenuation 
(duration of searched 
signal is 1/3rd width 
of smooth filter) 



Overshoot / undershoot effects by filtering the 
data with different filters (running mean)

For deviations at 
timescales of aprox. 
1/3rd the width of the 
smooth filter, 
disturbance 
attenuation is very 
small or neglible.



Calculate thresholds for statistical 
significance with Monte Carlo approach

By generating large populations of random events identical in 
design to a composite with real events, the probability (p) of 
obtaining a given value by chance in a composite with real 
events can be accurately known.

Distribution	of	daily	anomalies This has advantages 
over traditional tests 
(e.g. T/U tests), as it 
requires no minimum 
sample size or specific 
distribution, and it 
doesn’t need 
adjustment for 
autocorrelation.

Laken & Čalogović, 2013 (SWSC)
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How many Monte Carlo iterations are 
enough to get reliable significance 

intervals?
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Composites and significance intervals

daily averaged CR flux global cloud cover anomalies 

Anomalies 
(daily mean 
– 21-day 
running 
mean)

±1.96 
Standard 
error of 
mean (SEM) 

Confidence 
intervals at 
p0.05 and 
p0.01 
levels 
(obtained from 
PDF of 10,000 
Monte Carlo 
simulations)

Composites consists of 44 events
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How to obtain a false positive 

Cookbook…

• Identify a base or ‘undisturbed’ 
period before the key events, that 
represent ‘normal conditions’ (e.g. 
shown example uses t-10 - t-5)

• Calculate deviations against this 
‘undisturbed’ period (i.e. subtract 
every t point from mean of ‘normal 
conditions’)

• Statistically compare the data to the 
‘undisturbed’ period (e.g. T-test, or 
even MC from the base period [red 
lines p0.05 p0.01])

Normalization to base period reduces population variability 
towards base period, narrowing confidence intervals.



1

0

-1

-2

-3

2

3

C
R

 fl
ux

 a
no

m
al

y 
(%

)

C
lo

ud
 c

ov
er

 a
no

m
al

y 
(%

)

0 5 10-5-10

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

t (days since CR flux minimum)

How to avoid a false positive 

Overcoming bias with  
Monte Carlo (MC):

• Use confidence intervals from 
PDFs obtained with MCs, 
calculated independently for 
each t point

• Autocorrelation effects are 
automatically taken in to account 
(random samples in the MC all 
treated with an identical 
approach to the analyzed 
composite [blue lines p0.05 
p0.01])

Two different results for t+5 (the above with a mean p<0,05 and the earlier, with 
a mean 0.01>p<0.05 so which is correct?  



Big variability in the clouds can be often 
mixed with the expected signal!

Svensmark et al., 2012 (ACPD)

Data NORMALIZED between 
period of day -15 and day -5

GCR
(Climax NM)

MODIS CF 
(5 
EVENTS)

Laken, Čalogović, Beer and Pallé, 2012 (ACPD)

Dashed/dotted lines show correctly
adjusted 2 and 3σ level – calculated from 
10,000 MC simulations

95 percentile(2σ)

99 percentile (3σ)

Proper statistical tests (MC simulations ) 
are needed to asses the correct statistical 
significance!



Extension to longer analysis periods reveals no 
unusual variability in clouds during Fd events

Laken, Čalogović, Beer 
and Pallé, 2012 (ACPD)

±20 day 
analysis 
period

MODIS Liquid cloud fraction changes using 5 
biggest Fd events from Svensmark et al. (2012) 

±100 day 
analysis 
period

Values are anomalies from 
21-day moving averages (i.e. 
mean of each day subtracted 
from 21-day moving 
average).

Dashed and dotted lines 
indicate the 95th and 99th 
(two-tailed) percentile 
confidence intervals
respectively calculated from 
100,000 Monte Carlo 
simulations.



Just one event (and eventually outlier) 
can influence the whole composite

MODIS cloud fraction composite 
for Fd events 1, 3, 4, 5, 6 ranked 
by Svensmark et al. 2012

By replacing the event 2 with 
event 6 there are no significant 
changes in the composite!

Individual 5 Fd events plotted 
against  event 2 (19.1.2005) where 
is clear that all significance in 
Svensmark composite comes from 
event 2.

Laken, Čalogović, Beer 
and Pallé, 2012 (ACPD)



New results from Svensmark et al., 2016 again 
claim that CR induced strong changes in clouds

• Analyzed various cloud and 
aerosol data: AERONET 
(CCN data), SSM/I (liquid 
water content), ISCCP  (low, 
middle, high clouds over the 
oceans), MODIS (cloud 
effective emissivity, optical 
thickness, liquid water, cloud 
fraction, LWP, effective radius)

• In almost all parameters 
response on 95% level is 
found 

• Authors sort 26 Forbush
decrease events to their size 
and use only strongest 5 
events

ISCCP,	cloud	fraction	(CF)	for	different	cloud	altitudes
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Noise levels of data govern detectability of a signal. The noise varies with both the 
spatial area (a) that is averaged, and the number of composite events (n).
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Each point of grid 
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independent set 
of 10,000 MC 
simulations

possible to see how large a and n would need to be at minimum to 
see a hypothesized effect.

Size of sample area and number of 
events impact the noise
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Majority of Fd studies use less than 50 
events (n<50)

Studies using only strong Fd events have usually less than 10 events

Size	of	Europe	(2%)



DTR shows response to Fd events?

• Dragić et al. (2011) 
used composite of 37 
Fd events (>7%) that 
show significant 
increase in DTR ®
support for GCR-cloud 
hypothesis 

• Surface level Diurnal Temperature Range (DTR) ® effective 
proxy for cloud cover (indirect cloud data)

• DTR has longer time span than satellite cloud observations ®
allows to have the larger number of Forbush events



Analysis of Dragić et al. (2011) results

Analysis of the same data as in 
Dragic et al. (DTR data and 37 
Forbush events) shows that 
authors didn’t estimate correctly
statistical significance using t-
test and certain statistical 
assumptions.Significance intervals calculated from 

100 000 Monte Carlo simulations 
(using 21-day running average)

Dragić et al.
Normalization 
of data in 
period from t-10
to t-5 and 99% 
significance 
intervals

Laken,	Čalogović,	Shahbaz and Pallé,	2012	(JGR)



Detailed analysis shows that there is no 
DTR response during Forbush events

Laken,	Čalogović,	Shahbaz and Pallé,	2012	(JGR)

n=267 n=29

99th and 95th percentile  
confidence intervals (dotted and 
dashed lines) are calculated from 
100,000 MC simulations  

NCEP/NCAR reanalysis data 
(60°N – 60°S, land-area pixels 
only)

DTR from 210 meteorological 
stations (77.7°N – 34.7°N, 179.4°W 
– 170.4°E)

TSI flux from the PMOD 
reconstruction

Climax/Moscow NM



DTR shows no response to 
GCR or solar activity

Spatial distribution of DTR 
anomalies between day +3 and +6

Long term analysis (60 years of data) 
shows also that there is no significant 
periodicities in DTR data connected to the 
solar periodicities (e.g. 11-year, 1.68-year )

In conclusion, there is no 
evidence to support claims of a 
link between DTR and solar 
activity. 

Laken,	Čalogović,	Shahbaz and Pallé,	2012	(JGR)



Various issues that contributed 
to conflicting results of studies

• Data filtering - interference from variability in data at time 
scales greater than those concerning hypothesis testing, which 
may not necessarily be removed by accounting for linear trends 
over the composite periods 

• Normalization procedures which affect both the magnitude of 
anomalies in composites, and estimations of their significance 

• The application of statistical tests unable to account for 
autocorrelated data (e.g. student t-test)

• Issues of signal-to-noise ratios connected to spatio-temporal 
restrictions (e.g. by decreasing analyzed region size the 
searched signal may be buried in noise) 



Identification of solar—terrestrial 
links has many difficulties

• Weather and climate are highly variable over all time-scales -
only a small fraction of this variance (signal) could reasonably 
be ascribed to solar activity (rest is considered as noise)

• Statistical properties of climatic datasets are unstable (non-
stationary) – significant correlations over short timescales may 
disappear 

• Climatic data are spatially autocorrelated → number of 
observations globally doesn’t reduce uncertainty → no good 
substitute for long duration datasets. Problem: modern satellite-
era datasets only cover around three solar cycles

Pittock, 1978; 1979, 1982



Identification of solar—terrestrial 
links has many difficulties

• a posteriori selection of data (“cherry picking”) – one sample 
may have a statistically significant correlation, but drawn from a 
larger quantity of data which doesn't show the same relationship

• Exact (amplifying) mechanisms linking solar activity to climate 
are still poorly understood → not always possible to evaluate 
them with models (not testable = unscientific)

• Most studies are purely statistical → tests of significance may 
be accompanied by ambiguities in data selection and treatment, 
applied methods, or assumptions - including human bias, 
autocorrelations, smoothing, and post-hoc hypotheses. 

• Many of these issues already described by Pittock 1979, 1978



Recommendations (Pittock, 1979)

• Understand properties of the data (errors, biases, scatter, 
autocorrelation, spatial coherence, frequency distribution, stationarity)

• Choose statistical methods appropriate both to the properties of the 
data and the purpose of the analysis

• Critically examine the statistical significance of the result, making 
proper allowance for spatial coherence, autocorrelations, smoothing 
and data selection

• Test the result on one or more independent data sets, or sub-sets of 
the original data

• Endeavor to derive a physical hypothesis which can be tested on 
independent data sets, preferably at some other stage in the 
hypothesized chain of cause and effect

• Estimate the practical significance of the result (fraction of the 
relevant total variance which can be predicted or explained)

• Set out the properties and limitations of the data, the statistical 
methods used (including data selection and smoothing), and any 
assumptions, reservations or doubts

• Do not over-state the statistical or practical significance of the result



• Importance of reliable methods and statistical tests to overcome 
some of mentioned difficulties: communal analysis approach

• Implementation of robust significance testing (e.g. MC method)
• Python (completely free, all computer platforms)
• iPython: code in small editable units, descriptions and figures 

between code. Rapidly shared and replicated, runs in any internet 
browser

• Simple to run code on remote computers (cloud)
• Public Git repositories for instant download of analysis or upload 

tracked changes
• Allows even low skill programmers to follow the analysis. Viewed 

online, any system (only internet browser needed)
• Using FigShare (DOI number) code can be added as supplement to 

publications

Open-access coding solutions



iPhyton environment

Notebook viewer on-line:
http://tinyurl.com/composite-methods

GitHub repository (download and run it locally):
https://github.com/benlaken/Composite_methods_LC13



• Satellite cloud estimates are fraught with limitations and calibration 
errors, meaning long-term analysis is problematic at best, and, as in 
the case of commonly used ISCCP data, is fundamentally flawed

• Co-variance of solar-related parameters (UV, TSI, CR flux, solar wind) 
make signal attribution difficult

• Climate variability and volcanic activity, operating over time-scales 
similar to the solar cycle, make disambiguating causes of cloud cover 
change difficult

• Composite analysis of FD and GLE events is often compromised by the 
difficulties of statistical analysis of autocorrelated data. This is 
compounded by the application of inappropriate and black-box 
statistical tests

• Changing signal-to-noise ratios connected to spatio-temporal 
restrictions in composites have generally not been sufficiently taken 
into account in composite studies, leading to widespread false-positive 
statistical errors

Conclusions



• Methodological differences and inappropriate statistics in composite 
analysis can produce conflicting results. These are the likely source 
of discrepancies between cosmic ray – cloud composite studies

• Present cloud datasets are limited to detect a small changes in 
cloud cover as well to detect the regional cloud changes (<several 
thousand km) due to the big natural cloud variability (noise). Thus, 
localized and/or small effect on cloud cover can’t be completely 
excluded

• No compelling evidence to support a global cosmic ray-link using 
the satellite cloud data (ISCCP, MODIS) with long- or short-term 
(Fd) studies

• If cosmic ray-cloud relationship is second order (small and dynamic 
changes to cloud cover over certain regions) then it may be very 
difficult to detect it with currently available techniques and datasets

Conclusions



Thank you for your attention!
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