

Forbush decrease model for expanding CMEs (ForbMod)

Mateja Dumbović

mateja.dumbovic@uni-graz.at

Institute of Physics, University of Graz, Austria

What are Forbush decreases?

First observed by Forbush, 1937 and Hess & Demmelmair, 1937

Short term decreases in galactic cosmic ray count Typical duration several days Typical amplitudes several % (depends on the detector)

Cosmic rays in Heliosphere – in general

THREE COMPONENTS:

1) Galactic cosmic rays

www.nasa.gov

Cosmic rays in Heliosphere – in general

1) Galactic cosmic rays

2) Solar cosmic rays (solar energetic particles, SEPs)

Cosmic rays in Heliosphere – in general

THREE COMPONENTS:

1) Galactic cosmic rays

2) Solar cosmic rays (solar energetic particles, SEPs)

3) Anomalous cosmic rays

www.nasa.gov

Modulation of Galactic Cosmic Rays (GCRs) in Heliosphere

GCR flux anticorrelated with solar activity

www.neutron.bartol.udel.edu

Modulation of Galactic Cosmic Rays (GCRs) in Heliosphere

What causes Forbush decreases?

Dumbovic+,2012

2step Forbush decrease detected by NMs at Earth adapted from Dumbovic+, 2011, A&A

adapted from Dumbovic+(2011)

265

264

266

4 (Lu) ap

10 🖱

CME in SOHO/LASCO C3 2000 September 16 06:18 UT First C2 detection at 05:18

ICME detected in situ by Wind 2000 September 17 Shock arrival at 17:00

2step Forbush decrease detected by NMs at Earth adapted from Dumbovic+(2011)

ForbMod = analytical diffusion-expansion model for Forbush decreases caused by flux ropes

magnetic ejecta (ICME, magnetic cloud, flux rope)

- a closed magnetic structure
 - Initially empty of GCR
 - Locally of cylindrical form
- Moves with constant velocity

$$\frac{\partial U}{\partial t} = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r D_{\perp} \frac{\partial}{\partial r} \right) \right) \, .$$

First proposed by Morrison, 1956, PhysRev

ForbMod = analytical diffusion-expansion model for Forbush decreases caused by flux ropes

magnetic ejecta (ICME, magnetic cloud, flux rope)

- a closed magnetic structure
 - Initially empty of GCR
 - Locally of cylindrical form
- Moves with constant velocity

 $\frac{\partial U}{\partial t} = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r D_{\perp} \frac{\partial}{\partial r} \right) \right) \, .$

First proposed by Morrison, 1956, PhysRev

diffusion-only (after time t)

- does not vary in shape or size
- particles enter by perpendicular diffusion and slowly fill the structure

$$U(r,t) = U_0 \left(1 - J_0(\alpha_1 \frac{r}{a}) e^{-D(\frac{\alpha_1}{a})^2 t} \right)$$

Similar to e.g. Cane+, 1995, ICRCproc; Quenby+, 2008, JGR

ForbMod = analytical diffusion-expansion model for Forbush decreases caused by flux ropes

magnetic ejecta (ICME, magnetic cloud, flux rope)

- a closed magnetic structure
 - Initially empty of GCR
 - Locally of cylindrical form
- Moves with constant velocity

 $\frac{\partial U}{\partial t} = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r D_{\perp} \frac{\partial}{\partial r} \right) \right) \, .$

First proposed by Morrison, 1956, PhysRev

diffusion-only (after time *t*)

- does not vary in shape or size

- particles enter by perpendicular diffusion and slowly fill the structure

$$U(r,t) = U_0 \left(1 - J_0(\alpha_1 \frac{r}{a}) e^{-D(\frac{\alpha_1}{a})^2 t} \right)$$

Similar to e.g. Cane+, 1995, ICRCproc; Quenby+, 2008, JGR

diffusion-expansion (after time t)

- expands self-similarly

- particles enter by perpendicular diffusion and slowly fill the structure

$$U(r,t) = U_0 \left(1 - J_0(\alpha_1 r) e^{-\alpha_1^2 f(t)} \right)$$

r=r/a=const.; a=a(t).; D=D(t)

Similar to e.g. Munakata+, 2006, AdvGeophys; Arunbabu+, 2013, A&A

ForbMod = analytical diffusion-expansion model for Forbush decreases caused by flux ropes

magnetic ejecta (ICME, magnetic cloud, flux rope)

- a closed magnetic structure
 - Initially empty of GCR
 - Locally of cylindrical form
- Moves with constant velocity

 $\frac{\partial U}{\partial t} = \frac{1}{r} \left(\frac{\partial}{\partial r} \left(r D_{\perp} \frac{\partial}{\partial r} \right) \right) \, .$

First proposed by Morrison, 1956, PhysRev

diffusion-only (after time *t*)

- does not vary in shape or size

- particles enter by perpendicular diffusion and slowly fill the structure

$$U(r,t) = U_0 \left(1 - J_0(\alpha_1 \frac{r}{a}) e^{-D(\frac{\alpha_1}{a})^2 t} \right)$$

Similar to e.g. Cane+, 1995, ICRCproc; Quenby+, 2008, JGR

diffusion-expansion (after time t)

- expands self-similarly

- particles enter by perpendicular diffusion and slowly fill the structure

$$U(r,t) = U_0 \left(1 - J_0(\alpha_1 r) e^{-\alpha_1^2 f(t)} \right)$$

r=r/a=const.; a=a(t).; D=D(t)

Similar to e.g. Munakata+, 2006, AdvGeophys; Arunbabu+, 2013, A&A

 $f(t) = \int D(t)/a(t)^2 dt$

e.g. Demoulin, 2008, SolPhys

COMPETITION

BETWEEN CHANGE IN THE MAGNETIC FIELD

AND THE CHANGE IN THE SIZE

Physical explanation?

⁽based on *Gulisano+, 2010, A&A*)

COMPLEX INTERPLAY OF DIFFUSION AND EXPANSION

THE CASE STUDY

ICME & FD: 2014 May 30

CME: 2014 May 25

THE CASE STUDY – ForbMod results: radial profile

All expansion cases – same radial profile (Bessel function!)

FD radial profile symmetric & restricted to FR → Qualitative agreement with observations (e.g. Cane+, 1993, JGR; Belov+, 2015, SolPhys; Masias-Meza+, 2016, A&A)

For each expansion type best fit D where observed FD magnitude \approx calculated FD magnitude

THE CASE STUDY – ForbMod results: radial profile

THE CASE STUDY – ForbMod results: time evolution

A=FD magnitude (depression in the center of FR)

different expansion cases – different evolution (expansion competes with diffusion)

FD amplitude drops with time

→ Qualitative agreement with observations (e.g. Cane+, 1994, JGR; Blanco+, 2013, A&A)

THE CASE STUDY – ForbMod results: time evolution

THE CASE STUDY – ForbMod results: diffusion coefficient

CONCLUSIONS & FUTURE WORK

> ForbMod is analytical diffusion-expansion model for ejecta-only FDs

> FD amplitude depends on the interplay of diffusion and expansion

> Qualitatively agrees with observation

 \geq Quantitative agreement depends on the type of expansion and diffusion coefficient

NEXT STEPS: testing and constraints using FR forward modeling and multispacecraft measurements (Earth and Mars!)

Thank you for your attention!

Acknowledgements:

The research leading to these results has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 745782.