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What are Forbush decreases?
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First observed by Forbush, 1937 and Hess & Demmelmair, 1937
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Cosmic rays in Heliosphere – in general

THREE COMPONENTS:

1) Galactic cosmic rays
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particles, SEPs)
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Cosmic rays in Heliosphere – in general
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Modulation of Galactic Cosmic Rays (GCRs) in 
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Modulation of Galactic Cosmic Rays (GCRs) in 
Heliosphere

16 Marius S. Potgieter

4 Solar Modulation Theory

The paradigm of CR transport in the heliosphere has developed soundly over the last ⇠ 50 years.
The basic processes are considered to be known. However, it is still quite demanding to relate
the modulation of galactic CRs and of the ACRs to their true causes and to connect these causes
over a period of a solar cycle or more, from both a global and microphysics level. The latter
tends to be of a fundamental nature, attempting to understand the physics from first principles
(ab initio) whereas global descriptions generally tend to be phenomenological, mostly driven by
observations and/or the application of new numerical methods and models. In this context, global
numerical models with relevant transport parameters are essential to make progress. Obviously,
major attempts are made to have these models based on good assumptions, which then have to
agree with all major heliospheric observations.

Understanding the basics of solar modulation of CRs followed only in the 1950s when Parker
(1965) formulated a constructive transport theory. At that stage NMs already played a major role
in observing solar activity related phenomena in CRs. Although Parker’s equation contained an
anti-symmetric term in the embedded tensor accounting for regular gyrating particle motion, it
was only until the development of numerical models in the mid-1970s (Fisk, 1971, 1976, 1979) that
progress in appreciation the full meaning of transport theory advanced significantly.

4.1 Basic transport equation and theory

A basic transport equation (TPE) was derived by Parker (1965). Gleeson and Axford (1967) came
to the same equation more rigorously. They also derived an approximate solution to this TPE, the
so called force-field solution, which had been widely used and was surpassed only when numerical
models became available (Gleeson and Axford, 1968). For a formal overview of these theoretical
aspects and developments, see Schlickeiser (2002). See also Quenby (1984), Fisk (1999), and Moraal
(2011) for overviews of the TPEs relevant to CR modulation. The basic TPE follows from the
equations of motion of charged particles in fluctuating magnetic fields (on both large and small
scales) and averages over the pitch and phase angles of propagation particles. It is based on the
reasonable assumption that CRs are approximately isotropic. This equation is remarkably general
and is widely used to model CR transport in the heliosphere. The heliospheric TPE according to
Parker (1965), but in a rewritten form, is
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where f(r, P, t) is the CR distribution function, P is rigidity, t is time, r is the position in 3D,
with the usual three coordinates r, ✓, and � specified in a heliocentric spherical coordinate system
where the equatorial plane is at a polar angle of ✓ = 90°. A steady-state solution has @f/@t = 0
(part a), which means that all short-term modulation e↵ects (such as periods shorter than one solar
rotation) are neglected, which is a reasonable assumption for solar minimum conditions. Terms
on the right hand side respectively represent convection (part b), with V the solar wind velocity;
averaged particle drift velocity hv

d

i caused by gradients and curvatures in the global HMF (part c);
di↵usion (part d), with K

s

the symmetrical di↵usion tensor and then the term describing adiabatic
energy changes (part e). It is one of the four major modulation processes and is crucially important
for galactic CR modulation in the inner heliosphere. If (r · V) > 0, adiabatic energy losses are
described, which become quite large in the inner heliosphere (see the comprehensive review by
Fisk, 1979). If (r · V) < 0, energy gains are described, which may be the case for ACRs in the
heliosheath (illustrated, e.g., by Langner et al., 2006b; Strauss et al., 2010b). If (r · V) = 0, no
adiabatic energy changes occur for CRs, perhaps the case beyond the TS. This is probably an
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Figure 1.11.: A schematic overview of the physical processes governing modulation of
cosmic rays based on the transport theory.

random walk in the frame of reference of the small-scale magnetic irregularities, which
are known to be present in the interplanetary magnetic field. To describe the random
walk he used the classical probability distribution of the particle whose change can be
described by Fokker-Planck equation [see also Jokipii, 1971, Dröge, 2000]. In general case
where the scattering frequency is not small compared to the gyration frequency of the
particle, the motion of the particle in the frame of reference is described by random walk
back and forth along a line of force (guiding center drifts) as well as with diffusion across
the field lines. Since the interplanetary magnetic field is "frozen in" the solar wind (i.e.

they move together) there is a collective movement of particles with the solar wind as seen
outside of the frame of reference, i.e. convection by the solar wind. Another consequence
of the "frozen in" condition is that the interplanetary magnetic field is expanding due to
the movement of the solar wind. As their frame of reference is expanding, the particle
momentum declines, i.e. particles lose their kinetic energy. The physical processes of the
transport equation are shown in Figure 1.11.

The transport theory of GCR modulation was applied to explain Forbush decreases as
well, where the distinction has to be made between the modulation of the shock/sheath
region and ejecta of the ICME [e.g. Wibberenz et al., 1998, Cane, 2000]. The disturbances
in the GCR distribution are treated as deviations from equilibrium caused by local variati-
ons in one or more transport parameters. The shock/sheath region can be regarded as the
propagating diffusive barrier, where the decrease in the GCR flux starts at the shock boun-
dary, but the recovery continues even after the passage of the barrier [e.g. Chih and Lee,
1986, Le Roux and Potgieter, 1991, Wibberenz et al., 1997, and references therein]. It
was proposed that the primary reason for the depression caused by the magnetic ejecta
is the closed magnetic field structure of the flux rope, which is assumed to be empty of
GCRs close to the Sun. During its propagation it fills up slowly by GCRs entering the flux
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What causes Forbush decreases?
A&A 538, A28 (2012)

Regarding the two-step FDs caused by ICMEs, the reduced-
diffusion model is thought to be appropriate for the shock-sheath
region, whereas the exclusion of CRs because of the ejection
itself is suspected to be caused by their closed magnetic field
structure (Wibberenz et al. 1998). Two-step FDs are in the focus
of several recent studies, especially those that are associated with
magnetic clouds (e.g. Yu et al. 2010). They are not only the most
prominent events, showing highest depression amplitudes (Cane
2000), they are also found to be useful in unrevealing the internal
structure and geometry of ICMEs (e.g. Kuwabara et al. 2009;
Richardson & Cane 2011).

From the observational point of view, the influence of ICMEs
and CIRs on CR modulation was previously investigated through
a number of studies employing the superposed epoch analysis
(e.g. Iucci et al. 1979; Badruddin et al. 1986; Badruddin 1996;
Singh & Badruddin 2007), statistical analysis (e.g. Cane et al.
1996; Richardson et al. 1996; Belov et al. 2001; Čalogović et al.
2009; Chilingarian & Bostanjyan 2010) and case-studies (e.g.
Jämsén et al. 2007). The results were frequently mutually con-
flicting, and consequently did not provide a clear empirical bac-
ground. The correlation between the depression amplitude and
some CIR parameters was found by Richardson et al. (1996)
and Čalogović et al. (2009). Richardson et al. (1996) pointed
out that the SWD speed might be the most important parameter,
favoring a diffusion-convection model for this behavior. On the
other hand, Čalogović et al. (2009) found a statistically signifi-
cant correlation between the depression amplitude and the SWD
magnetic field strength, which is more in favor of the diffusion-
drift model proposed by Kota & Jokipii (1991). Similar incon-
sistencies were found in studies of ICMEs. For example, Cane
et al. (1996) declared speed as a poor predictor of depression
amplitude, whereas Chilingarian & Bostanjyan (2010) found a
strong correlation between the two. Another aspect of CR mod-
ulation, the time profile, was found to be related to the speed for
both CIRs (Iucci et al. 1979) and ICMEs (Badruddin et al. 1986;
Penna & Quillen 2005), but some questions still remain open
(see, e.g. Lockwood et al. 1986; Jämsén et al. 2007).

In our previous study (Dumbović et al. 2011, hereafter
Paper I) we examined the relationship between various SWD pa-
rameters and FD characteristics without distinguishing different
types of SWDs. In this paper the sample of events used in Paper I
is divided into subsamples according to SWD types, and the re-
sults are compared with those obtained in Paper I for the whole
population, i.e. SWDs in general. We also consider in more de-
tail the “branching effect” noticed in Paper I as well as the role
of geomagnetic effects and the phenomenon of over-recovery
(i.e., the return of the CR count to values above the pre-decrease
level).

2. Data and method

A total of 26 periods between 1998 and 2005, each covering
intervals of 20 days, were selected using the list of identified
CME-ICME pairs prepared by Schwenn et al. (2005) and the
case-study list of the European FP7-project SOTERIA (http://
soteria-space.eu/). To eliminate the daily variations, an av-
erage cosmic ray count rate (CR count) of three to four neutron
monitor (NM) stations of similar rigidity located at different lon-
gitudes (see Appendix A of Paper I) was calculated, using hourly
averaged data corrected for atmospheric pressure. The NM
recordings were taken from the Space Physics Interactive Data
Resource (SPIDR; http://spidr.ngdc.noaa.gov/spidr/).
We used in-situ solar wind data from the Advanced Composition
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Fig. 1. ICME that arrived on 24/25 September 1998 (DOY = 268/269).
The simultaneous step-increase in all the parameters is a signature of the
ICME-driven shock, whereas the consecutive low-temperature region is
specific for the ejection itself (e.g., Cane 2000). The CR count returns
to the pre-decrease value, i.e., there is no over-recovery.

Explorer (ACE; Stone et al. 1998) database for SWD parame-
ters. In particular, Level-2 data from the Solar Wind Electron,
Proton, and Alpha Monitor (SWEPAM; McComas et al. 1998)
and the magnetometer instrument (MAG; Smith et al. 1998)
were analyzed. The SWDs were identified as increases in so-
lar wind speed and interplanetary magnetic field (IMF) strength
and fluctuations, and were associated with a decrease in the CR
count (Forbush decrease, FD). The characteristics of the iden-
tified SWDs and the corresponding FDs were then measured as
described in Fig. 1 of Paper I. A list of events, a detailed descrip-
tion of data handling and the measurement procedure as well as
the list of measured parameters are given in Paper I.

The measured quantities involve the amplitude of magnetic
field enhancement (B), amplitude of the magnetic field fluctua-
tions (δB), relative increase in solar wind speed (vrel), maximum
solar wind speed associated with the disturbance (vmax), duration
of the disturbance (measured as the duration of the enhancement
in the magnetic field strength, tB), amplitude of the CR depres-
sion (hereafter, |FD|) and the duration of the depression (tFD)
(see Fig. 1 in Paper I). Using these quantities, several combined
parameters were employed as proxies of physical quantities (for
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Fig. 2. CIR that occurred on 5 February 2000 (DOY = 36). The den-
sity and magnetic field peak at the forehead of the high-speed stream,
whereas the increase in speed and temperature coincides with the de-
crease of density. The CR count in the recovery phase does not exceed
the pre-decrease value, i.e., there is no over-recovery.

details see Paper I): BtB as the proxy for the time integral of the
IMF perturbation (measure of the “strength” of the disturbance),
the Bv product as the proxy for maximum (convective) electric
field (can also be regarded as the unit-width magnetic flux that
passes over the observer in unit time), BvtB as the proxy for the
magnetic flux (per unit-width of the disturbance cross-section),
and |FD|tFD as a measure of the total amount of CRs reduced by
the passage of the disturbance.

First, the data set was sorted by the type of SWD, i.e., a dis-
tinction was made between interplanetary coronal mass ejections
(ICME), corotating interaction regions (CIR), and mixed ICME-
CIR disturbances (mixed). The distinction between ICMEs and
CIRs was made following Burlaga et al. (1984), Richardson
et al. (1996), Cane (2000) and Richardson (2004), whereas the
events that showed characteristics of both were denoted as mixed
events. Examples of ICME-, CIR-, and mixed-events are pre-
sented in Figs. 1–3, respectively.

In the next step, the events were separated from those with
and without a shock. The disturbances that propagate with su-
personic speed produce a magnetohydrodynamic shock at their
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Fig. 3. ICME followed by CIR. The ICME-driven shock arrived on
06 April 2000 (DOY = 97). About two days later a new increase in
speed and temperature occurred, associated with the decrease of den-
sity, which is a signature of CIR. The CR count in the recovery phase
of the FD exceeds the pre-decrease level, i.e., an over-recovery is ob-
served.

front, where the shock-sheath region is characterized by high
density, temperature and magnetic field, and by the enhanced
level of the magnetic field fluctuations (see, e.g. Burlaga et al.
1984; Cane 2000). Differences between the shock-associated
and no-shock events were studied by Badruddin et al. (1986) and
Badruddin (1996). However, they applied only the superposed
epoch analysis, lacking quantitative statistical results. Figures 1
and 3 illustrate events associated with a shock. In both cases
the discontinuities are associated with a two-step fall of CR
count, which is typical for shock-related disturbances (see, e.g.,
Wibberenz et al. 1998; Cane 2000). The discontinuity is absent
in Fig. 2, which illustrates a typical no-shock event.

Finally, the events were divided into those showing the
over-recovery and those without it. The phenomenon of over-
recovery, i.e., the situation where the CR count in the recovery
phase exceeds the pre-decrease value, was noticed by Jämsén
et al. (2007) in high-energy data measured by a muon detec-
tor. Though here we inspect only the low-energy NM data,
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Forbush decreases caused by Interplanetary Coronal Mass Ejections (ICMEs)

Adapted from Richardson & Cane, 2011, SolPhys
REMOTE OBSERVATION VISUALISATION IN SITU MEASUREMENTS
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Forbush decreases caused by Interplanetary Coronal Mass Ejections (ICMEs)
REMOTE OBSERVATION VISUALISATION IN SITU MEASUREMENTS
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Forbush decreases caused by Interplanetary Coronal Mass Ejections (ICMEs)
REMOTE OBSERVATION VISUALISATION IN SITU MEASUREMENTS
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Forbush decreases caused by Interplanetary Coronal Mass Ejections (ICMEs)
REMOTE OBSERVATION VISUALISATION IN SITU MEASUREMENTS
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magnetic ejecta
(ICME, magnetic cloud, flux rope)

- a closed magnetic structure

- Initially empty of GCR

- Locally of cylindrical form

- Moves with constant velocity

∂U

∂t
=

1

r

(

∂

∂r

(

rD⊥

∂

∂r

)

)

, (2)

where D⊥ is the perpendicular diffusion coefficient. This partial differential equation
is solved using the method of separation of variables (U(r, t) = T (t)R(r)), under the
assumption that the diffusion coefficient does not depend on r. The time dependence is
then given by the expression [see e.g. Crank, 1975, for details]:

T (t) = e−λ2Dt , (3)

where λ is a constant determined by the initial and boundary conditions. It can be
shown that the equation for the radial dependance can be written in a form:

r2R(r)′′ + rR(r)′ + λ2r2R(r) = 0 , (4)

which is the Bessel’s equation of the order 0. The solution of the Equation 4 can be
generally written as:

R(λr) = C1J0(λr) + C2N0(λr) , (5)

where J0(λr) and N0(λr) are Bessel and Neumann functions, respectively [see e.g.

Butkov, 1968, for details]. When the physical condition of finity at r = 0 is imposed on
R(λr) we find that only J0(λr) is admissible as a solution (N0(λr) is not finite in r = 0).
Therefore, the solution of the diffusion equation given by Equation 2 is:

U(r, t) = CJ0(λr)e
−λ2Dt , (6)

where C and λ are constants determined by the initial and boundary conditions. The
initial and boundary conditions can be written in the form:

U(r, t) =

{

0, 0 < r < a, t = 0

U0, r = a, t ≥ 0
(7)

where a is the radius of the cylinder, i.e. of the magnetic ejecta. With these initial and
boundary conditions, the solution for the particle density inside the magnetic ejecta can
be written [see Equation 5.22 in Crank, 1975]:

U(r, t) = U0

(

1−
2

a

∞
∑

n=1

J0(λnr)

λnJ1(λna)
e−Dλ2

n
t

)

, (8)

where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2

n, therefore the solution can be written as:

2

First proposed by Morrison, 1956, PhysRev

ForbMod = analytical diffusion-expansion model for Forbush decreases caused by flux ropesDumbovic+(inPrep)



magnetic ejecta
(ICME, magnetic cloud, flux rope)

- a closed magnetic structure

- Initially empty of GCR

- Locally of cylindrical form

- Moves with constant velocity

diffusion-only
(after time t)

- does not vary in shape or size

- particles enter by perpendicular 
diffusion and slowly fill the structure

Similar to e.g. Cane+, 1995, ICRCproc;
Quenby+, 2008, JGR
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where D⊥ is the perpendicular diffusion coefficient. This partial differential equation
is solved using the method of separation of variables (U(r, t) = T (t)R(r)), under the
assumption that the diffusion coefficient does not depend on r. The time dependence is
then given by the expression [see e.g. Crank, 1975, for details]:

T (t) = e−λ2Dt , (3)

where λ is a constant determined by the initial and boundary conditions. It can be
shown that the equation for the radial dependance can be written in a form:

r2R(r)′′ + rR(r)′ + λ2r2R(r) = 0 , (4)

which is the Bessel’s equation of the order 0. The solution of the Equation 4 can be
generally written as:

R(λr) = C1J0(λr) + C2N0(λr) , (5)

where J0(λr) and N0(λr) are Bessel and Neumann functions, respectively [see e.g.

Butkov, 1968, for details]. When the physical condition of finity at r = 0 is imposed on
R(λr) we find that only J0(λr) is admissible as a solution (N0(λr) is not finite in r = 0).
Therefore, the solution of the diffusion equation given by Equation 2 is:

U(r, t) = CJ0(λr)e
−λ2Dt , (6)

where C and λ are constants determined by the initial and boundary conditions. The
initial and boundary conditions can be written in the form:

U(r, t) =

{

0, 0 < r < a, t = 0

U0, r = a, t ≥ 0
(7)

where a is the radius of the cylinder, i.e. of the magnetic ejecta. With these initial and
boundary conditions, the solution for the particle density inside the magnetic ejecta can
be written [see Equation 5.22 in Crank, 1975]:

U(r, t) = U0
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where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2

n, therefore the solution can be written as:
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Figure 1: a) Bessel functions of the order zero (of the first kind), J0(↵nr) for di↵erent
positive roots ↵n; b) modeled cosmic ray count change during the passage of the ICME for
di↵erent values of the parameter f, which depends on the di↵usion coe�cient, time, and
ICME radius (D, t, and a, respectively).

character as shown in Figure 1a. On the other hand exponential function rapidlly decreases
with ↵2
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where C is a constant that holds all expresions with n¿1. Constant C can be obtained
through the fact that the expression given in equation 10 has to satisfy initial and boundary
conditions given in equation 7, C = ↵1J1(↵1)

2 . The final, normalised solution is therefore:
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.
The Forbush decrease is then given by A(%) = (U(r, t)/U0 � 1) · 100% and is shown in

Figure 1b for three di↵erent factors f , where f = �Dt/a2.

3 Result discussion

The model qualitatively explaines Forbush decreases caused by sheathless ICMEs. However
it is di�cult to estimate the quantitative aspect of the model, because it depends on the
di↵usion coe�cient which is not known. Future work should be based on how to derive the
di↵usion coe�cient and how the model then qualitatively agrees with the observations.

There are some di↵erences to the model presented by Cane et al. [1995]. We use di↵erent
boundary conditions: Cane et al. [1995] use U = 0 at t = 0, whereas we used U = U0 at
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where D⊥ is the perpendicular diffusion coefficient. This partial differential equation
is solved using the method of separation of variables (U(r, t) = T (t)R(r)), under the
assumption that the diffusion coefficient does not depend on r. The time dependence is
then given by the expression [see e.g. Crank, 1975, for details]:
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where λ is a constant determined by the initial and boundary conditions. It can be
shown that the equation for the radial dependance can be written in a form:
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which is the Bessel’s equation of the order 0. The solution of the Equation 4 can be
generally written as:

R(λr) = C1J0(λr) + C2N0(λr) , (5)

where J0(λr) and N0(λr) are Bessel and Neumann functions, respectively [see e.g.

Butkov, 1968, for details]. When the physical condition of finity at r = 0 is imposed on
R(λr) we find that only J0(λr) is admissible as a solution (N0(λr) is not finite in r = 0).
Therefore, the solution of the diffusion equation given by Equation 2 is:

U(r, t) = CJ0(λr)e
−λ2Dt , (6)

where C and λ are constants determined by the initial and boundary conditions. The
initial and boundary conditions can be written in the form:

U(r, t) =

{

0, 0 < r < a, t = 0

U0, r = a, t ≥ 0
(7)

where a is the radius of the cylinder, i.e. of the magnetic ejecta. With these initial and
boundary conditions, the solution for the particle density inside the magnetic ejecta can
be written [see Equation 5.22 in Crank, 1975]:
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where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2
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Figure 1: a) Bessel functions of the order zero (of the first kind), J0(↵nr) for di↵erent
positive roots ↵n; b) modeled cosmic ray count change during the passage of the ICME for
di↵erent values of the parameter f, which depends on the di↵usion coe�cient, time, and
ICME radius (D, t, and a, respectively).

character as shown in Figure 1a. On the other hand exponential function rapidlly decreases
with ↵2

n, therefore the solution can be written as:

U(r, t) = U0

 
1� C

2

↵1

J0(↵1
r
a)

J1(↵1)
e�D(

↵1
a )2t

!
. (9)

where C is a constant that holds all expresions with n¿1. Constant C can be obtained
through the fact that the expression given in equation 10 has to satisfy initial and boundary
conditions given in equation 7, C = ↵1J1(↵1)
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The Forbush decrease is then given by A(%) = (U(r, t)/U0 � 1) · 100% and is shown in

Figure 1b for three di↵erent factors f , where f = �Dt/a2.

3 Result discussion

The model qualitatively explaines Forbush decreases caused by sheathless ICMEs. However
it is di�cult to estimate the quantitative aspect of the model, because it depends on the
di↵usion coe�cient which is not known. Future work should be based on how to derive the
di↵usion coe�cient and how the model then qualitatively agrees with the observations.

There are some di↵erences to the model presented by Cane et al. [1995]. We use di↵erent
boundary conditions: Cane et al. [1995] use U = 0 at t = 0, whereas we used U = U0 at
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Note that the initial and boundary conditions need to be rewritten accordingly:

U(r, t) =

8
<

:
0, 0 < r < 1, t = 0

U0, r = 1, t � 0
(11)

Following the same procedure as described in section 2 the final solution can be written as:

U(r, t) = U0
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where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:

a(t) = a0
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n

a

is the power-law index which observational studies approximately constrain to n

a✏

[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:

B(t) = B0
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where B0 is the starting magnetic field and n

B

is the power-law index which observational studies approximately
constrain to n

B✏

[0.88, 1.89] (e.g. Gulisano et al. 2012, and references therein). Using equations 13 and 14 we can
consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
given as �
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= B
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A, where B
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is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B
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, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �

ax
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2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n
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= 2n
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). However, observational studies involving n

B

and n

a

measurements have shown that n
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is not necessarily equal to 2n
a

(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n

a

= 0.89 and n

B

= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n

B

⇡ 2n
a

. However, for the perturbed magnetic clouds they
found that they expand less with distance with n

a

= 0.45 and n

B

= 1.89, where n
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� 2n
a

> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n
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= 1.14 and n

B

= 1.64, where n

B

� 2n
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< 0.
Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n

B

� 2n
a

= 0,

r=r/a=const.; a=a(t).; D=D(t)
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where D⊥ is the perpendicular diffusion coefficient. This partial differential equation
is solved using the method of separation of variables (U(r, t) = T (t)R(r)), under the
assumption that the diffusion coefficient does not depend on r. The time dependence is
then given by the expression [see e.g. Crank, 1975, for details]:

T (t) = e−λ2Dt , (3)

where λ is a constant determined by the initial and boundary conditions. It can be
shown that the equation for the radial dependance can be written in a form:

r2R(r)′′ + rR(r)′ + λ2r2R(r) = 0 , (4)

which is the Bessel’s equation of the order 0. The solution of the Equation 4 can be
generally written as:

R(λr) = C1J0(λr) + C2N0(λr) , (5)

where J0(λr) and N0(λr) are Bessel and Neumann functions, respectively [see e.g.

Butkov, 1968, for details]. When the physical condition of finity at r = 0 is imposed on
R(λr) we find that only J0(λr) is admissible as a solution (N0(λr) is not finite in r = 0).
Therefore, the solution of the diffusion equation given by Equation 2 is:

U(r, t) = CJ0(λr)e
−λ2Dt , (6)

where C and λ are constants determined by the initial and boundary conditions. The
initial and boundary conditions can be written in the form:

U(r, t) =

{

0, 0 < r < a, t = 0

U0, r = a, t ≥ 0
(7)

where a is the radius of the cylinder, i.e. of the magnetic ejecta. With these initial and
boundary conditions, the solution for the particle density inside the magnetic ejecta can
be written [see Equation 5.22 in Crank, 1975]:
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where J0 and J1 are Bessel functions (of the first kind) of the order 0 and 1, respectively,
and λn are defined by the positive roots of J0(λna) = 0 (λn = αn

a , αn are positive
roots of J0), which are tabulated in tables of Bessel functions. Bessel functions J0 have
oscilatory character as shown in Figure 1a. On the other hand exponential function
rapidlly decreases with α2

n, therefore the solution can be written as:
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Figure 1: a) Bessel functions of the order zero (of the first kind), J0(↵nr) for di↵erent
positive roots ↵n; b) modeled cosmic ray count change during the passage of the ICME for
di↵erent values of the parameter f, which depends on the di↵usion coe�cient, time, and
ICME radius (D, t, and a, respectively).

character as shown in Figure 1a. On the other hand exponential function rapidlly decreases
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where C is a constant that holds all expresions with n¿1. Constant C can be obtained
through the fact that the expression given in equation 10 has to satisfy initial and boundary
conditions given in equation 7, C = ↵1J1(↵1)
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The Forbush decrease is then given by A(%) = (U(r, t)/U0 � 1) · 100% and is shown in

Figure 1b for three di↵erent factors f , where f = �Dt/a2.

3 Result discussion

The model qualitatively explaines Forbush decreases caused by sheathless ICMEs. However
it is di�cult to estimate the quantitative aspect of the model, because it depends on the
di↵usion coe�cient which is not known. Future work should be based on how to derive the
di↵usion coe�cient and how the model then qualitatively agrees with the observations.

There are some di↵erences to the model presented by Cane et al. [1995]. We use di↵erent
boundary conditions: Cane et al. [1995] use U = 0 at t = 0, whereas we used U = U0 at
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Note that the initial and boundary conditions need to be rewritten accordingly:

U(r, t) =

8
<

:
0, 0 < r < 1, t = 0

U0, r = 1, t � 0
(11)

Following the same procedure as described in section 2 the final solution can be written as:

U(r, t) = U0

 
1� J0(↵1r)e

�↵

2
1f(t)

!
, (12)

where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n

a

is the power-law index which observational studies approximately constrain to n

a✏

[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:
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where B0 is the starting magnetic field and n

B

is the power-law index which observational studies approximately
constrain to n

B✏

[0.88, 1.89] (e.g. Gulisano et al. 2012, and references therein). Using equations 13 and 14 we can
consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
given as �
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A, where B
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is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B
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, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �
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2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n
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= 2n
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). However, observational studies involving n
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and n
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measurements have shown that n

B

is not necessarily equal to 2n
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(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n
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= 0.89 and n

B

= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n

B

⇡ 2n
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. However, for the perturbed magnetic clouds they
found that they expand less with distance with n
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= 0.45 and n
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= 1.89, where n
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> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n
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= 1.14 and n
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= 1.64, where n
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< 0.
Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n

B

� 2n
a

= 0,
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n

B

� 2n
a

> 0, and n

B

� 2n
a

< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B

c

can come from the change of the magnetic flux it follows that
n

B

� 2n
a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:
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where x = n

B
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. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B
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> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
B

� 2n
a

< 0, x = �0.5 �! f(t) / t
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2 (increased magnetic flux and/or non circular cross section)

4. n
B
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< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n
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Based on these considerations on the expansion of the FR we can solve the function f(t) =
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D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:

f(t) =
D0

a

2
0

·
⇣

v

R0

⌘
x

·
Z

t

xdt , (15)

where x = n

B

� 2n
a

. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n
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and n
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ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠
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t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:
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In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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Note that the initial and boundary conditions need to be rewritten accordingly:

U(r, t) =

8
<

:
0, 0 < r < 1, t = 0

U0, r = 1, t � 0
(11)

Following the same procedure as described in section 2 the final solution can be written as:

U(r, t) = U0

 
1� J0(↵1r)e

�↵

2
1f(t)

!
, (12)

where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:

a(t) = a0

 
R(t)

R0

!
na

, (13)

where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n

a

is the power-law index which observational studies approximately constrain to n

a✏

[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:

B(t) = B0

 
R(t)

R0

!�nB

, (14)

where B0 is the starting magnetic field and n

B

is the power-law index which observational studies approximately
constrain to n

B✏

[0.88, 1.89] (e.g. Gulisano et al. 2012, and references therein). Using equations 13 and 14 we can
consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
given as �

ax

= B

�

A, where B

�

is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B

c

, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �

ax

⇠ B

c

a

2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n

B

= 2n
a

). However, observational studies involving n

B

and n

a

measurements have shown that n

B

is not necessarily equal to 2n
a

(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n

a

= 0.89 and n

B

= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n

B

⇡ 2n
a

. However, for the perturbed magnetic clouds they
found that they expand less with distance with n

a

= 0.45 and n

B

= 1.89, where n

B

� 2n
a

> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n

a

= 1.14 and n

B

= 1.64, where n

B

� 2n
a

< 0.
Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n

B

� 2n
a

= 0,

e.g. Demoulin, 2008, SolPhys
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< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B
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can come from the change of the magnetic flux it follows that
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= 0 relates to the conserved magnetic flux, n
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� 2n
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> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B
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a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
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< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:

f(t) =
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where x = n
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. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n
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and n
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ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠
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t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:
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= 0, x = 0 �! f(t) / t (conserved magnetic flux)
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2 (increased magnetic flux and/or non circular cross section)
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< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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Following the same procedure as described in section 2 the final solution can be written as:
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where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n
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is the power-law index which observational studies approximately constrain to n
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[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:
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where B0 is the starting magnetic field and n
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is the power-law index which observational studies approximately
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consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
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is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B
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, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �
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2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n
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). However, observational studies involving n
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and n
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measurements have shown that n
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is not necessarily equal to 2n
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For instance Gulisano et al. (2010) report n
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= 0.89 and n

B

= 1.85 for non-perturbed magnetic clouds (for which
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. However, for the perturbed magnetic clouds they
found that they expand less with distance with n
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= 0.45 and n
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= 1.89, where n
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> 0. On the other hand,
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B

� 2n
a

= 0,

AASTEX Forbush Decrease Model (ForbMod) 5

Note that the initial and boundary conditions need to be rewritten accordingly:

U(r, t) =

8
<

:
0, 0 < r < 1, t = 0

U0, r = 1, t � 0
(11)

Following the same procedure as described in section 2 the final solution can be written as:

U(r, t) = U0

 
1� J0(↵1r)e

�↵

2
1f(t)

!
, (12)

where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
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found that they expand less with distance with n
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Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
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< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B
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can come from the change of the magnetic flux it follows that
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a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:
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where x = n
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. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n
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and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
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� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)
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> 0, x = 0.5 �! f(t) / t
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2 (reduced magnetic flux)
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2 (increased magnetic flux and/or non circular cross section)
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< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
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are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
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, and A is the cross section of the FR. Assuming a circular cross section
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2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n
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= 2n
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). However, observational studies involving n
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and n
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measurements have shown that n
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is not necessarily equal to 2n
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(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n
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= 0.89 and n
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= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n
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. However, for the perturbed magnetic clouds they
found that they expand less with distance with n
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= 0.45 and n
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= 1.89, where n
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> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n
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= 1.14 and n
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= 1.64, where n
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< 0.
Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n
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= 0,
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B

� 2n
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> 0, and n

B

� 2n
a

< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B

c

can come from the change of the magnetic flux it follows that
n

B

� 2n
a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:
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where x = n

B

� 2n
a

. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B

� 2n
a

> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
B

� 2n
a

< 0, x = �0.5 �! f(t) / t

1
2 (increased magnetic flux and/or non circular cross section)

4. n
B

� 2n
a

< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
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Based on these considerations on the expansion of the FR we can solve the function f(t) =
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defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
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across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
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. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n
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and n
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ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠
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t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a
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< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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Note that the initial and boundary conditions need to be rewritten accordingly:

U(r, t) =

8
<

:
0, 0 < r < 1, t = 0

U0, r = 1, t � 0
(11)

Following the same procedure as described in section 2 the final solution can be written as:

U(r, t) = U0

 
1� J0(↵1r)e
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2
1f(t)

!
, (12)

where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:

a(t) = a0
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, (13)

where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n

a

is the power-law index which observational studies approximately constrain to n

a✏

[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:

B(t) = B0
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where B0 is the starting magnetic field and n

B

is the power-law index which observational studies approximately
constrain to n

B✏

[0.88, 1.89] (e.g. Gulisano et al. 2012, and references therein). Using equations 13 and 14 we can
consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
given as �

ax

= B

�

A, where B

�

is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B

c

, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �

ax

⇠ B

c

a

2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n

B

= 2n
a

). However, observational studies involving n

B

and n

a

measurements have shown that n

B

is not necessarily equal to 2n
a

(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n

a

= 0.89 and n

B

= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n

B

⇡ 2n
a

. However, for the perturbed magnetic clouds they
found that they expand less with distance with n

a

= 0.45 and n

B

= 1.89, where n

B

� 2n
a

> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n

a

= 1.14 and n

B

= 1.64, where n

B

� 2n
a

< 0.
Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n

B

� 2n
a

= 0,
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n

B

� 2n
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> 0, and n

B

� 2n
a

< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B

c

can come from the change of the magnetic flux it follows that
n

B

� 2n
a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:
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where x = n

B

� 2n
a

. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B

� 2n
a

> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
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� 2n
a

< 0, x = �0.5 �! f(t) / t

1
2 (increased magnetic flux and/or non circular cross section)

4. n
B

� 2n
a

< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠
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xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
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non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
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4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
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Note that the initial and boundary conditions need to be rewritten accordingly:
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Following the same procedure as described in section 2 the final solution can be written as:
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where U0 is the particle density at the flux rope surface, J0 is a Bessel function (of the first kind) of the order 0, ↵1 is a
first positive root of J0 (tabulated in tables of Bessel functions), r is the radial distance scaled to the radius of the flux
rope (r = r(t)/a(t)), and f(t) is a function of time which depends on the interplay between the di↵usion of particles
into the flux rope and its expansion. Since function f(t) depends on the ratio D(t)/a(t)2, where both D(t) and a(t)
are generally not known and are still subject of ongoing studies, it is a somewhat arbitrary function. However, there
are some basic constraints on the function f(t). Firstly, it must not diverge in t = 0 and moreover, due to the initial
condition it must satisfy f(t = 0) = 0. Secondly, the behaviour of the function is constrained with observation. Cane
et al. (1994) and Blanco et al. (2013) found that the FD amplitude decreases with heliospheric distance, indicating that
the particle density within flux rope increases with time. Therefore, we expect f(t) to be a positive and monotonically
increasing function. Further constraints on the function f(t), i.e. the solution given in equation 12 can be achieved
through comparison of the model results and observation.
In equation 9 an assumption was taken that the ratio r(t)/a(t) does not change with time in order to apply the

method of separation of variables. This assumption holds true when the change rate of any shell within the cylinder
is proportional to the change rate of its outermost shell, dr/da = const., i.e.when r(t) = const · a(t). It can be easily
shown that this holds true when the cylinder is expanding self-similarly, where self-similar expansion means that the
coordinates of a plasma element at a given time are scaled by a time-dependent factor compared to the reference-time
value (e.g. Démoulin et al. 2008). Therefore, a self-similar expansion of a FR radius can be written as:
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where R(t) is the heliospheric distance at time t, R0 is the starting heliospheric distance, a0 is the starting FR radius
and n
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is the power-law index which observational studies approximately constrain to n
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[0.5, 1] (see e.g. Bothmer and
Schwenn 1998; Leitner et al. 2007; Démoulin et al. 2008; Gulisano et al. 2012). An expression similar to equation 13
can be used to describe the corresponding decrease of the central magnetic field:
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is the power-law index which observational studies approximately
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[0.88, 1.89] (e.g. Gulisano et al. 2012, and references therein). Using equations 13 and 14 we can
consider di↵erent types of FR expansion based on consideration of the axial magnetic flux. The axial magnetic flux is
given as �
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A, where B

�

is the axial magnetic field, which is in e.g.Lundquist force free FR model related to
the magnetic field in the flux-rope center, B
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, and A is the cross section of the FR. Assuming a circular cross section
the axial magnetic flux is given by �

ax

⇠ B

c

a

2, which can used to determine the power-law index in equation 14 with
the assumption that the magnetic flux is conserved (n
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). However, observational studies involving n
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and n
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measurements have shown that n
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is not necessarily equal to 2n
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(see Gulisano et al. 2012, and references therein).
For instance Gulisano et al. (2010) report n
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= 0.89 and n
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= 1.85 for non-perturbed magnetic clouds (for which
pronounced linear velocity profile is detected), where n
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. However, for the perturbed magnetic clouds they
found that they expand less with distance with n
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> 0. On the other hand,
Leitner et al. (2007) found that magnetic clouds in general show n
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= 1.64, where n
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Mentioned studies are focused on the inner solar system between 0.3 and 1 AU, which is the main focus of this study
as well, therefore, based on these observational studies we regard three di↵erent expansion trends: n

B

� 2n
a

= 0,
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n

B
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> 0, and n

B

� 2n
a

< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B

c

can come from the change of the magnetic flux it follows that
n

B

� 2n
a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:
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where x = n

B

� 2n
a

. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B

� 2n
a

> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
B

� 2n
a

< 0, x = �0.5 �! f(t) / t

1
2 (increased magnetic flux and/or non circular cross section)

4. n
B

� 2n
a

< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable
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and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B

� 2n
a

> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
B

� 2n
a

< 0, x = �0.5 �! f(t) / t

1
2 (increased magnetic flux and/or non circular cross section)

4. n
B

� 2n
a

< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable

X = 0.5
(based on Gulisano+, 2010, A&A) 
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n

B

� 2n
a

> 0, and n

B

� 2n
a

< 0. There is also a physical strongpoint to these expansion trends. Assuming circular
cross section of the FR and that the only change in B

c

can come from the change of the magnetic flux it follows that
n

B

� 2n
a

= 0 relates to the conserved magnetic flux, n
B

� 2n
a

> 0 relates to the magnetic flux being reduced with
heliospheric distance, whereas n

B

� 2n
a

< 0 is related to the increase of the magnetic flux. Observational evidence
for the reduction of the magnetic flux through erosion due to the magnetic reconnection was found in studies by e.g.
Dasso et al. (2007) and Ru↵enach et al. (2015), whereas Manchester et al. (2014) suggest that the reconnection at
the rear of the flux rope can lead to flux injection. On the other hand, assuming that the flux remains conserved, the
cross section is not circular but e.g. elliptical and therefore changes with the heliospheric distance at slower rate than
a circular cross section, one also obtains n

B

� 2n
a

< 0.
Based on these considerations on the expansion of the FR we can solve the function f(t) =

R
D(t)/a(t)2dt which

defines the time dependent part of the solution given in equation 12. We assume that the FR moves with a constant
velocity v = R/t and that the change of the FR radius and of the central magnetic field is given by equations 13 and
14, respectively. Furthermore, we assume that the di↵usion coe�cient relates to the magnetic field strength D ⇠ 1/B
(see Section 4) and therefore increases with heliospheric distance with a power-law index n

B

. With these assumptions
the time dependent part is reduced to:

f(t) =
D0
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2
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·
⇣

v
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⌘
x

·
Z
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xdt , (15)

where x = n

B

� 2n
a

. In the case of the conserved magnetic flux/circular cross section x = 0 and integration is trivial.
In cases where the flux is not conserved and/or the cross section is not circular we regard simple options where x = 0.5
and x = �0.5. The selected options are simple to integrate and are related to the n

B

and n

a

ranges restricted by
the observational studies (see above). We note that both x = 0.5 and x = �0.5 result in rational functions, which
are obtained using also higher values of x, except in the case x = �1 when integration of f(t) ⇠

R
t

xdt results in a
logarithmic function. Therefore, x = �1 is regarded as a fourth, special case of expansion.
To summarise, we consider the solution of the di↵usion-expansion equation given in equation 12 for 4 cases of

di↵erent types of expansion which lead to 4 di↵erent types of f(t) governing the time-behaviour of the modelled FD:

1. n
B

� 2n
a

= 0, x = 0 �! f(t) / t (conserved magnetic flux)

2. n
B

� 2n
a

> 0, x = 0.5 �! f(t) / t

3
2 (reduced magnetic flux)

3. n
B

� 2n
a

< 0, x = �0.5 �! f(t) / t

1
2 (increased magnetic flux and/or non circular cross section)

4. n
B

� 2n
a

< 0, x = �1 �! f(t) / ln (at+ 1) (increased magnetic flux and/or non circular cross section - special
case)

In Figure 2 the solution of the model for di↵erent types of expansion are shown and compared to the basic di↵usion
(without expansion) solution discussed in Section 2. Figures 2a and 2b show the relative particle density decrease
across the flux rope, i.e.Forbush decrease (FD) in the radial direction of the FR. It can be seen that in all cases the size
of the depression is restricted to the dimensions of the FR and is symmetric, therefore, all solutions show a qualitative
agreement with observed ejecta-FD profiles (e.g. Cane 1993; Belov et al. 2015; Maśıas-Meza et al. 2016). In Figures
2c and 2d it can be seen that in all cases the relative amplitude of the particle density in the center of the FR, i.e.FD
magnitude, decreases with time, which is also qualitatively in agreement with observational studies (Cane et al. 1994;
Blanco et al. 2013). It can also be seen that for each type of the expansion FD has a larger amplitude than FD for
non-expanding FR and that the FD magnitude decrease in time is fastest in the non-expanding case, showing how
expansion indeed acts as a counter-mechanism to the di↵usion. In order to quantitatively analyse the model it needs to
be constrained with real measurements and compared to observation. However, it should be noted that although the
model can be constrained with CME measurements (a0 and R0), the di↵usion coe�cient is a somewhat free parameter
of the model and therefore demands a special consideration (see Section 4).

4. DIFFUSION COEFFICIENT

Based on the transport theory the di↵usion process is related to the small-scale irregularities of a large-scale magnetic
field (e.g. Parker 1965). Particles are most e↵ectively scattered by irregularities with scales which are comparable to the
gyroradius of the particles, i.e. particles can enter into the FR via di↵usion when the di↵usion length, L, is comparable

X = -0.5
(based on Leitner+, 2007, JGR)
Special case: x = -1 (integrationà logarithmic)

X = 0.5
(based on Gulisano+, 2010, A&A) 
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Figure 3. a) The relative GCR phase space density, A, as a function of the radial position within the FR, r/a, after a transit time of 84h for di↵erent types
of expansion of a generic CME (a0 = 5 R� , R0 = 20 R� , v = 496 km s�1 ) and no expansion case (a = 0.1 AU, D0 = DE) for DE = 3 · 1018 cm2 s�1 (D0 =
2.6 · 1016 cm2 s�1 for x = 0 and x = 0.5; D0 = 2.8 · 1017 cm2 s�1 for x = �0.5 and x = �1). The dashed magenta line marks the FD magnitude, Am.
b) Same as in a) for DE = 9 · 1018 cm2 s�1 (D0 = 7.7 · 1016 cm2 s�1 for x = 0 and x = 0.5; D0 = 8.4 · 1017 cm2 s�1 for x = �0.5 and x = �1).
c) Time evolution of the FD magnitude, Am for DE = 3 · 1018 cm2 s�1 .The same generic CME and di↵erent expansion types are applied as in a) and b). Two
selected transit times are highlighted by dashed magenta lines.
d) Same as in c) for DE = 9 · 1018 cm2 s�1 .
e) FD magnitude at Earth, Am, vs di↵usion coe�cient at Earth, DE , for a generic CME (a0 = 5 R� ,R0 = 20 R� ) moving at a speed of 1157 km s�1 (transit time
36 h). Di↵erent expansion types are applied as in a)–d). Two selected DE are highlighted by dashed magenta lines.
f) Same as in e) for v = 496 km s�1 (transit time 84 h).
g) FD magnitude, Am, after a transit time of 84h vs the initial FR radius, a0, for DE = 3 · 1018 cm2 s�1 .The same generic CME and di↵erent expansion types are
applied as in a) and b), with a = 0.1AU = 22 R� for no expansion case. Two selected a0 are highlighted by dashed magenta lines.
h) Same as in g) for DE = 9 · 1018 cm2 s�1 .

COMPLEX INTERPLAY OF DIFFUSION AND EXPANSION
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(a) (b)

Figure 5. a) in situ measurements of the magnetic cloud and the corresponding Forbush decrease 2014 May 30 (top to the
bottom the panels show: 1) magnetic field strength (black) and fluctuations (gray); 2) magnetic field components (in Geocentric
Solar Magnetospheric system); 3) plasma density (blue) and temperature (red); 4) plasma speed (black) and beta parameter
(gray); 5) relative hourly cosmic ray count by SOHO/EPHIN).
b) GCS reconstruction for 2014 May 25 CME at 20:39 using coronagraphic images from STEREO- B/COR2 (top), SOHO/C3
(middle), and STEREO-A/COR2 (bottom). Best fit parameters are: longitude(stonyhurst) = 5.9�, latitude = �20�, tilt = 57�,
height = 18.2 R�, aspectratio = 0.25, and half � angle = 15�.

coronal on-disc signatures). The best fit is obtained by changing three geometry and three positional parameters. The
positional parameters are latitude, longitude and tilt, whereas geometry parameters are the aspect ratio (parameter
related to the varying radius of the cross section across the croissant axis), the half-angle (the angle between the axis
of the leg and the face-on axis of the croissant) and the height. In Figure 5b the best fit of the GCS reconstruction
is shown, where it can be seen that the CME is directed south of the ecliptic and slightly to the west with respect to
the Sun-Earth line. It is heavily tilted with respect to the ecliptic and has a relatively small cross-section and width
(small aspect ratio and half-angle).
Based on the GCS reconstruction we derive that the CME is Earth-directed with the apex slightly deflected southwest

from the Sun-Earth line (see Figure 6a). In order to test our CME-ICME association we use the Drag-based ensemble
model (DBEM, Dumbović et al. 2017b) for heliospheric propagation of ICMEs. As an input we use geometry and
position of the CME obtained by GCS and kinematical profile from the SOHO/LASCO CME Catalog. As the initial
speed for DBEM we use the last measured speed in LASCO/C3 field of view assuming that the CME propagation from
that point on is under the influence of drag. Due to the FR tilt the expected width in the ecliptic plane is estimated
using the projection of the FR in the ecliptic plane and is found to be ! ⇡ 22�. Based on the in situ measurements of
plasma speed (see Figure 5a) we estimate that the ambient solar wind speed is w ⇡ 330 km s�1 and we treat the drag
parameter � as a free parameter of the DBEM to obtain the most likely arrival time and speed roughly in agreement
with the observed arrival time 2014 May 30 12:00 UT and arrival speed v = 350 km s�1 . The uncertainties in the input
are taken into account by taking input ranges instead of the input values, where the output is given by the distribution
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Solar Magnetospheric system); 3) plasma density (blue) and temperature (red); 4) plasma speed (black) and beta parameter
(gray); 5) relative hourly cosmic ray count by SOHO/EPHIN).
b) GCS reconstruction for 2014 May 25 CME at 20:39 using coronagraphic images from STEREO- B/COR2 (top), SOHO/C3
(middle), and STEREO-A/COR2 (bottom). Best fit parameters are: longitude(stonyhurst) = 5.9�, latitude = �20�, tilt = 57�,
height = 18.2 R�, aspectratio = 0.25, and half � angle = 15�.

coronal on-disc signatures). The best fit is obtained by changing three geometry and three positional parameters. The
positional parameters are latitude, longitude and tilt, whereas geometry parameters are the aspect ratio (parameter
related to the varying radius of the cross section across the croissant axis), the half-angle (the angle between the axis
of the leg and the face-on axis of the croissant) and the height. In Figure 5b the best fit of the GCS reconstruction
is shown, where it can be seen that the CME is directed south of the ecliptic and slightly to the west with respect to
the Sun-Earth line. It is heavily tilted with respect to the ecliptic and has a relatively small cross-section and width
(small aspect ratio and half-angle).
Based on the GCS reconstruction we derive that the CME is Earth-directed with the apex slightly deflected southwest

from the Sun-Earth line (see Figure 6a). In order to test our CME-ICME association we use the Drag-based ensemble
model (DBEM, Dumbović et al. 2017b) for heliospheric propagation of ICMEs. As an input we use geometry and
position of the CME obtained by GCS and kinematical profile from the SOHO/LASCO CME Catalog. As the initial
speed for DBEM we use the last measured speed in LASCO/C3 field of view assuming that the CME propagation from
that point on is under the influence of drag. Due to the FR tilt the expected width in the ecliptic plane is estimated
using the projection of the FR in the ecliptic plane and is found to be ! ⇡ 22�. Based on the in situ measurements of
plasma speed (see Figure 5a) we estimate that the ambient solar wind speed is w ⇡ 330 km s�1 and we treat the drag
parameter � as a free parameter of the DBEM to obtain the most likely arrival time and speed roughly in agreement
with the observed arrival time 2014 May 30 12:00 UT and arrival speed v = 350 km s�1 . The uncertainties in the input
are taken into account by taking input ranges instead of the input values, where the output is given by the distribution
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THE CASE STUDY – ForbMod results: radial profile
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For each expansion type best fit D where
observed FD magnitude ≈ calculated FD magnitude

All expansion cases – same radial profile
(Bessel function!)

FD radial profile symmetric & restricted to FR
à Qualitative agreement with observations

(e.g. Cane+,1993, JGR; Belov+, 2015, SolPhys; Masias-Meza+, 2016, A&A)
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à Qualitative agreement with observations
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X=0 (mag. flux conserved)
à D=1.22 · 1019 cm2 s−1

X=0.5 (mag. flux decreased)
à D=0.55 · 1019 cm2 s−1

X=-0.5 (mag. flux increased)
à D=0.68 · 1019 cm2 s−1

X=-1 (mag. flux increased)
à D=0.45 · 1019 cm2 s−1



THE CASE STUDY – ForbMod results: time evolution

X=0 (mag. flux conserved)
àD=1.22 · 1019 cm2 s−1

X=0.5 (mag. flux decreased)
àD=0.55 · 1019 cm2 s−1

X=-0.5 (mag. flux increased)
àD=0.68 · 1019 cm2 s−1

X=-1 (mag. flux increased)
àD=0.45 · 1019 cm2 s−1

A=FD magnitude
(depression in the center of FR)

different expansion cases – different evolution
(expansion competes with diffusion)

FD amplitude drops with time
à Qualitative agreement with observations

(e.g. Cane+, 1994, JGR; Blanco+, 2013, A&A)
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X=0 (mag. flux conserved)
àD=1.22 · 1019 cm2 s−1

X=0.5 (mag. flux decreased)
àD=0.55 · 1019 cm2 s−1

X=-0.5 (mag. flux increased)
àD=0.68 · 1019 cm2 s−1

X=-1 (mag. flux increased)
àD=0.45 · 1019 cm2 s−1

A=FD magnitude
(depression in the center of FR)

Measurements taken from 
Blanco+, 2013, A&A

(statistical study of FD 
magnitude vs CME transit time)

different expansion cases – different evolution
(expansion competes with diffusion)

FD amplitude drops with time
à Qualitative agreement with observations

(e.g. Cane+, 1994, JGR; Blanco+, 2013, A&A)
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THE CASE STUDY – ForbMod results: diffusion coefficient
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CONCLUSIONS & FUTURE WORK

ØForbMod is analytical diffusion-expansion model for ejecta-only FDs

ØFD amplitude depends on the interplay of diffusion and expansion

ØQualitatively agrees with observation

ØQuantitative agreement depends on the type of expansion and diffusion coefficient

ØNEXT STEPS: testing and constraints using FR forward modeling and 
multispacecraft measurements (Earth and Mars!)
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