

High resolution analysis of chromospheric fine structure with ALMA

<u>R.Brajša</u>^{1,2}, D.Sudar¹, I.Skokić^{1,2}, A.O.Benz³, M.Kuhar³ ¹Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia

 ² European ARC, Astronomical Institute of the Czech Academy of Sciences, Ondrejov, Czech Republic
 ³University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland

> EST Meeting, Bairisch Kölldorf, Austria, 9 – 11 October 2017

Agenda

- Topic 1: Full-disc solar ALMA image,
 λ=1.21 mm: general look
- Topic 2: Full-disc solar ALMA image,
 λ=1.21 mm: coronal bright points
- Topic 3: Interferometric ALMA image, λ=3.0 mm: fine structures & series of images ("movie")
- Conclusions
- Acknowledgements

Topic 1: Full-disc solar images, general look

Identification of solar structure in full disc ALMA images
single dish, total power, 18 December 2015
λ=1.21 mm, 248 GHz, Band 6
Brajša et al. (2017a)

SDO/AIA, 18 December 2015, $\lambda = 170 \text{ nm}; \text{AR}, \text{SS}$

NSO, NISP, Cerro Tololo, 18 December 2015, Hα; AR, SS, FIL

20:12 UT

SDO/AIA, 18 Dec. 2015, λ=17.1nm, λ=30.4nm, λ=21.1nm; AR, CH

SDO/AIA, 18 December 2015, λ=30.4 nm; AR, FIL, IL

SDO/HMI, 18 December 2015; IL, AR1: B_{max}≈1000 G; SS: B_{max}=1500-2500 G

ALMA, 18 December 2015, λ=1.21 mm, 248 GHz, Band 6, Rol

Structure	r	$T_b(QS)$	n(QS)	$T_b(\text{structure})$	n(structure)	$\Delta T_b = T_b(\text{structure}) - T_b(\text{QS})$
	(pixels)	(K)	(pixels)	(K)	(pixels)	(K)
QS	0	6040 ± 70	78	6040 ± 70	78	0
SS	77	6170 ± 140	2833	6080 ± 210	136	-90
AR1	105	6240 ± 150	2832	7250 ± 210	3048	+1010
IL	147	6300 ± 160	2833	6130 ± 160	897	-170
PR (FIL1)	229	6460 ± 160	2824	6350 ± 110	154	-110
CH1	273	6590 ± 140	2833	6540 ± 130	2804	-50

- QS Quiet Sun
- SS Sunspot
- AR Active Region
- IL Inversion magnetic line
- PR (FIL) Prominence on the disc
- CH Coronal Hole
- r relative distance from the disc center
- σ_{av}(T_b) ≈ 150 K
- Iimb brightening ≈ 10 %

Topic 2: Full-disc solar images: coronal bright points

- Can coronal bright points be seen in full disc ALMA images of the Sun ?
- single dish, total power, 18 December 2015
- λ=1.21 mm, 248 GHz Band 6
 Brajša et al. (2017a)

Coronal bright points, SDO/AIA, 19.3 nm, 56 structures

He 1083 nm dark points, NSO/SOLIS, Tucson, assoc. rate = 75 %

ALMA, λ =1.21 mm, 248 GHz, assoc. rate = 82 %

Zoom in, ALMA, d ≈ 490 Mm

Zoom in, SDO/HMI

Topic 3: Interferometric images, fine structures

- What are small bright structures seen in high resolution interferometric images ?
- λ=3 mm, 100 GHz, Band 3, 16 December 2015
- Sunspots ?
- Brajša et al. (2017b)

ALMA, 16 December 2015, λ =3 mm, 100 GHz Band 3

NSO/SOLIS, H-alpha wing, Tucson

SDO/HMI, magnetogram

SDO/AIA, 170 nm

SDO/AIA, 30.4 nm

SDO/AIA, 19.3 nm

Conclusions

- pointing and overlaying (coalignment) of ALMA images
 with other images → successful, TP (≈5") & INT (≈1")
- INT image reconstruction \rightarrow correct
- ARs \rightarrow bright in B6 & B3
- sunspot umbra \rightarrow dark in B6, but \rightarrow bright in B3
- filaments (on disc) and CHs are not discernible against the QS background
- Iarge-scale elongated dark structures in B6 → inversion lines of the magnetic field
- o coronal bright points → He 1083 dark points → ALMA B6 (TP) bright points; strongly correlated with magnetograms
- small bright ALMA B3 (INT) structures \rightarrow H α dark points
 - → magnetograms → UV continuum

limb brightoning

Acknowledgements

- Research leading to this work was performed within ESO Development Plan Study: Solar Research with ALMA (2014 -2017).
- This work has been supported in part by Croatian Science Foundation under the project 6212 "Solar and Stellar Variability" and by the European Commission FP7 project SOLARNET (312495, 2013 - 2017), which is an Integrated Infrastructure Initiative (I3) supported by FP7 Capacities Programme.
- The authors would like to thank: M. Barta, T.S. Bastian, A.S. Hales, R.E. Hills, H.S. Hudson, K. Iwai, A. Kobelski, M. Loukitcheva, N.M. Phillips, P. Saint-Hilaire, M. Shimojo, S. Wedemeyer, S.M. White, P. Yagoubov for help, support and excellent cooperation during various phases of this work.