High resolution analysis of chromospheric fine structure with ALMA

R.Brajša1,2, D.Sudar1, I.Skokić1,2, A.O.Benz3, M.Kuhar3

1Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia

2European ARC, Astronomical Institute of the Czech Academy of Sciences, Ondrejov, Czech Republic

3University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland
Agenda

Topic 1: Full-disc solar ALMA image, $\lambda=1.21$ mm: general look

Topic 2: Full-disc solar ALMA image, $\lambda=1.21$ mm: coronal bright points

Topic 3: Interferometric ALMA image, $\lambda=3.0$ mm: fine structures & series of images ("movie")

Conclusions

Acknowledgements
Topic 1: Full-disc solar images, general look

- Identification of solar structure in full disc ALMA images
- Single dish, total power, 18 December 2015
- $\lambda=1.21$ mm, 248 GHz, Band 6
- Brajša et al. (2017a)
SDO/AIA, 18 December 2015, \(\lambda = 170 \text{ nm} \); AR, SS
NSO, NISP, Cerro Tololo, 18 December 2015, Hα; AR, SS, FIL

20:12 UT
SDO/AIA, 18 Dec. 2015, λ=17.1nm, λ=30.4nm, λ=21.1nm; AR, CH

20:12:58 UT
SDO/AIA, 18 December 2015, \(\lambda=30.4\) nm; AR, FIL, IL
SDO/HMI, 18 December 2015; IL, AR1: $B_{\text{max}} \approx 1000$ G; SS: $B_{\text{max}} = 1500$-2500 G
ALMA, 18 December 2015, \(\lambda=1.21 \text{ mm}, \) 248 GHz, Band 6, RoI

CSV data release

20:12:21 UT

Brajša et al. (2017a)
QS – Quiet Sun
SS – Sunspot
AR – Active Region
IL – Inversion magnetic line
PR (FIL) – Prominence on the disc
CH – Coronal Hole
r – relative distance from the disc center
$\sigma_{av}(T_b) \approx 150$ K
limb brightening $\approx 10\%$
Can coronal bright points be seen in full disc ALMA images of the Sun?

- single dish, total power, 18 December 2015
- $\lambda=1.21$ mm, 248 GHz Band 6
- Brajša et al. (2017a)
Coronal bright points, SDO/AIA, 19.3 nm, 56 structures
He 1083 nm dark points, NSO/SOLIS, Tucson, assoc. rate = 75 %
ALMA, $\lambda=1.21$ mm, 248 GHz, assoc. rate = 82 %
Zoom in, ALMA, $d \approx 490 \text{ Mm}$
Zoom in, SDO/HMI
Topic 3: Interferometric images, fine structures

What are small bright structures seen in high resolution interferometric images?
λ=3 mm, 100 GHz, Band 3, 16 December 2015
Sunspots?
Brajša et al. (2017b)
ALMA, 16 December 2015, \(\lambda=3 \) mm, 100 GHz Band 3.
NSO/SOLIS, H-alpha wing, Tucson
SDO/HMI, magnetogram
SDO/AIA, 170 nm
SDO/AIA, 30.4 nm
SDO/AIA, 19.3 nm
Conclusions

- pointing and overlaying (coalignment) of ALMA images with other images → successful, TP (≈5") & INT (≈1")
- INT image reconstruction → correct
- ARs → bright in B6 & B3
- sunspot umbra → dark in B6, but → bright in B3
- filaments (on disc) and CHs are not discernible against the QS background
- large-scale elongated dark structures in B6 → inversion lines of the magnetic field
- coronal bright points → He 1083 dark points → ALMA B6 (TP) bright points; strongly correlated with magnetograms
- small bright ALMA B3 (INT) structures → Hα dark points → magnetograms → UV continuum
- limb brightening
Acknowledgements

Research leading to this work was performed within ESO Development Plan Study: Solar Research with ALMA (2014 - 2017).

This work has been supported in part by Croatian Science Foundation under the project 6212 ”Solar and Stellar Variability” and by the European Commission FP7 project SOLARNET (312495, 2013 - 2017), which is an Integrated Infrastructure Initiative (I3) supported by FP7 Capacities Programme.

The authors would like to thank: M. Barta, T.S. Bastian, A.S. Hales, R.E. Hills, H.S. Hudson, K. Iwai, A. Kobelski, M. Loukitcheva, N.M. Phillips, P. Saint-Hilaire, M. Shimojo, S. Wedemeyer, S.M. White, P. Yagoubov for help, support and excellent cooperation during various phases of this work.