

An analysis of chromospheric fine structure with the ALMA radio telescope

 <u>R.Brajša</u>^{1,2}, D.Sudar¹, I.Skokić^{1,2}, A.O.Benz³, M.Kuhar³
 ¹Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia
 ² European ARC, Astronomical Institute of the Czech Academy of Sciences, Ondrejov, Czech Republic
 ³University of Applied Sciences and Arts Northwestern Switzerland, Windisch, Switzerland

> 15th European Solar Physics Meeting, Budapest, Hungary, 4 - 8 September 2017

Topic 1: Full-disc solar images, general look

Identification of solar structure in full disc (single dish, total power) ALMA images
λ=1.21 mm, 248 GHz, Band 6
Brajša et al. (2017a)

SDO/AIA, 18 December 2015, $\lambda = 170 \text{ nm}; \text{AR}, \text{SS}$

NSO, NISP, Cerro Tololo, 18 December 2015, Hα; AR, SS, FIL

20:12 UT

SDO/AIA, 18 Dec. 2015, λ=17.1nm, λ=30.4nm, λ=21.1nm; AR, CH

SDO/AIA, 18 December 2015, λ=30.4 nm; AR, FIL, IL

SDO/HMI, 18 December 2015; IL, AR1: B_{max}≈1000 G; SS: B_{max}=1500-2500 G

ALMA, 18 December 2015, λ=1.21 mm, 248 GHz, Band 6, Rol

Structure	r (pixels)	$T_b(QS)(K)$	T_b (structure) (K)	$\Delta T_{b}(\mathbf{K})$
QS	0	6040	6040	0
SS	77	6165	6080	-85
AR	105	6238	7253	+1015
IL	147	6302	6127	-175
PR (FIL)	229	6461	6347	-114
CH	273	6585	6537	-48

- QS Quiet Sun
- SS Sunspot
- AR Active Region
- IL Inversion magnetic line
- PR (FIL) Prominence on the disc
- CH Coronal Hole
- r relative distance from the disc center
- $\sigma_{av}(T_b) \approx 150 \text{ K}$
- Iimb brightening ≈ 10 %

Topic 2: Full-disc solar images: coronal bright points

Can coronal bright points be seen in full disc ALMA images of the Sun ?

- single dish, total power, 18 December 2015
- λ=1.21 mm, 248 GHz Band 6
 Brajša et al. (2017a)

Coronal bright points, SDO/AIA, 19.3 nm, 56 structures

He 1083 nm dark points, NSO/SOLIS, Tucson, assoc. rate = 75 %

ALMA, λ =1.21 mm, 248 GHz, assoc. rate = 82 %

Zoom in, ALMA, d ≈ 486 Mm

Zoom in, SDO/HMI

Topic 3: Interferometric images, fine structures

- What are small bright structures seen in high resolution interferometric images ?
- λ=3 mm, 100 GHz Band 3, 16 December 2015
- Sunspots ?
- Brajša et al. (2017b)

ALMA, 16 December 2015, λ =3 mm, 100 GHz Band 3

NSO/SOLIS, H-alpha wing, Tucson

SDO/HMI, magnetogram

SDO/AIA, 170 nm

SDO/AIA, 30.4 nm

SDO/AIA, 19.3 nm

Conclusions

- INT image reconstruction \rightarrow correct
- pointing and overlaying (coalignment) of ALMA images with other images
 successful, TP & INT
- ARs \rightarrow bright in B6 & B3
- sunspot umbra \rightarrow dark in B6, but \rightarrow bright in B3
- filaments (on disc) and CHs are not discernible against the QS background
- Iarge-scale elongated dark structures in B6 → inversion lines of the magnetic field
- o coronal bright points → He 1083 dark points → ALMA B6 (TP) bright points; strongly correlated with magnetograms
- small bright ALMA B3 (INT) structures \rightarrow H α dark points
 - → magnetograms → UV continuum

limb brightoning

Acknowledgements

- Research leading to this work was performed within ESO Development Plan Study: Solar Research with ALMA (2014 -2017).
- This work has been supported in part by Croatian Science Foundation under the project 6212 "Solar and Stellar Variability" and by the European Commission FP7 project SOLARNET (312495, 2013 - 2017), which is an Integrated Infrastructure Initiative (I3) supported by FP7 Capacities Programme.
- The authors would like to thank: M. Barta, T.S. Bastian, A.S. Hales, R.E. Hills, H.S. Hudson, K. Iwai, A. Kobelski, M. Loukitcheva, N.M. Phillips, P. Saint-Hilaire, M. Shimojo, S. Wedemeyer, S.M. White, P. Yagoubov for help, support and excellent cooperation during various phases of this work.