

XIVth Hvar Astrophysical Colloquium

Hvar, Croatia, September 26-30, 2016

An Application of the Random-Walk Model to Proper Motions of Coronal Bright Points from SDO Data

Ivica Skokić

ivica.skokic@asu.cas.cz

The Team

R. Brajša, D. Sudar

Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb, Croatia

S. H. Saar

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

I. Poljančić-Beljan

Department of Physics, University of Rijeka Radmile Matejčić 2, 51000 Rijeka, Croatia

I. Skokić

European ALMA Regional Center, Czech Node, Astronomical Institute of the Czech Academy of Sciences, Fričova 298, 251 65 Ondrejov, Czech Republic

Outline

- Coronal Bright Points
- Dataset, SDO/AIA, method
- Solar velocity field
- CBP proper motions and random walk model
- Diffusion of magnetic elements
- Comparison with other measurements
- Conclusion

Coronal Bright Points (CBPs)?

- small bright structures in lower corona
- visible in EUV and Xray images
- associated with small magnetic bipolar regions in the photosphere
- lifetime from few • minutes to several days
- several hundred CBPs present on the Sun every instant

Data – Solar Dynamics Observatory

- SDO/AIA, 19.3 nm channel
- segmentation algorithm, modification of the McIntosh and Gurman (2005) (Martens et al. 2012)
- t ~ 5 months
- cadence 10 min
- processing, height correction, outlier removal, etc.

Data – CBP distribution

(a)

Data – velocity field

CBP derived differential rotation profile

Residual rotational and meridional velocities

 Δv_{rot} – signs of torsional oscillation pattern

vmer – predominantly polar flow in agreement with Doppler measurements

Sudar et al. (2016)

Motion of the individual CBP

Random walk model

- CBPs as "atoms" tracers of small magnetic elements (Leighton, 1964)
- displacement proportional to the square of elapsed time
- lifetime τ , velocity v
- Mean free path $l = \tau \cdot v$
- Diffusion coefficient $D = \frac{\langle l^2 \rangle}{4\tau}$

Velocity distributions

Absolute velocity

Data – Solar Dynamics Observatory, AIA

Resuls

Complete dataset
n = 80966, I ~ 3000 km, D ~ 250 km²/s

Source	$l \; [\mathrm{km}]$	τ [h]	$D [\rm km^2 s^{-1}]$
Brajša <i>et al.</i> (2008)	5200	12	160
Brajša <i>et al.</i> (2008)	8600	30	170
Brajša <i>et al.</i> (2008)	15100	60	260
Hagenaar et al. (1999)		< 3	70-90
Hagenaar et al. (1999)		> 8	200-250
Iida (2014)		6	200
DeVore <i>et al.</i> (1985)			200-400
Wang (2004)			500-600

Resuls

- Over different lifetimes:
- 0..6h: n = 69603, I ~ 2800 km, D ~ 250 km²/s
- 6..12h: n = 9475, I ~ 4000 km, D ~ 170 km²/s
- 12..18h: n = 1551, I ~ 5100 km, D ~ 150 km²/s
- 18..24h: n = 337, I ~ 6100 km, D ~ 140 km²/s
- similar trend observed in two-day SDO data (Brajša et al. 2015)

Comparison with other measurements (lida, 2014)

Conclusions

- a preliminary analysis
- CBPs good tracers of the solar velocity field (spatial and temporal coverage)
- studies of short-term variations of differential rotation and meridional motions
- better understand CBP formation, structure and evolution
- Random walk model applied to SDO CBP data results in diffusion coefficient D = 150-250 km²/s,
- D varies over different scales
- in general agreement with other measurements but not with simulations

