Po: $;$ KRet

Forbush decreases caused by expanding ICMEs: analytical model and observation

Mateja Dumbović ${ }^{1}$, Vršnak, B. ${ }^{1}$, Čalogović J.1 ${ }^{1}$ Heber, B^{-2}, Herbst, K^{2}, Kuhl, P^{2}, Galsdorf, D. ${ }^{2}$, Veronig, A^{3}, Temmer, M^{3}, Mostl, $\mathrm{C} .{ }^{3}$

Forbush decreases caused by Interplanetary Coronal Mass Ejections (ICMEs)

REMOTE OBSERVATION

SOHO/LASCO C2 image

Richardson \& Cane (2011)

IN SITU MEASUREMENTS

Dumbovic et al (2012)

Temmer \& Nitta (2015)

Two-step Forbush decreases caused by ICMEs
$1^{\text {st }}$ step:
shock/sheath region highly turbulent strong B
fast decrease, prolonged recovery

$2^{\text {nd }}$ step:

CME ejecta
(magnetic cloud, flux rope)
smooth \& strong B
fluctuations very low

Symmetric-like decrease, timespan limited to the ejecta

The analytical model - assumptions

magnetic ejecta (ICME, magnetic cloud, flux rope)

- a closed magnetic structure: no direct magnetic connection between the inside and the outside => particles can enter into the ejecta via perpendicular diffusion and/or drift (simplicity reasons -> only diffusion)
- initially empty

magnetic ejecta (ICME, magnetic cloud, flux rope)
- cylindrical form
- moves with constant velocity
- does not vary in shape or size
equation for the particle density:

$$
\frac{\partial U}{\partial t}=\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r D_{\perp} \frac{\partial}{\partial r}\right)\right)
$$

- radial diffusion
- D does not change throughout ejecta
initial \& boundary conditions:

$$
U(r, t)= \begin{cases}0, & 0<r<a, t=0 \\ U_{0}, & r=a, t \geq 0\end{cases}
$$

- initially empty
- Density outside constant

Exact analytical solution:

$$
U(r, t)=U_{0}\left(1-\frac{2}{a} \sum_{n=1}^{\infty} \frac{J_{0}\left(\lambda_{n} r\right)}{\lambda_{n} J_{1}\left(\lambda_{n} a\right)} \mathrm{e}^{-D \lambda_{n}^{2} t}\right)
$$

We neglect terms with $n>1$ and renormalize according to initial \& boundary conditions to get the solution:

$$
U(r, t)=U_{0}\left(1-J_{0}\left(\alpha_{1} \frac{r}{a}\right) \mathrm{e}^{-D\left(\frac{\alpha_{1}}{a}\right)^{2} t}\right)
$$

$$
\begin{gathered}
U(r, t)=U_{0}\left(1-J_{0}\left(\alpha_{1} \frac{r}{a}\right) \mathrm{e}^{-D\left(\frac{\alpha_{1}}{a}\right)^{2} t}\right) \\
\mathrm{f}=\mathrm{f}(\mathrm{a}, \mathrm{t}, \mathrm{D}) \\
\mathrm{a}=\text { radius of ICME } \\
\mathrm{t}=\text { diffusion (transit) time } \\
\mathrm{D}=\text { diffusion coefficient }
\end{gathered}
$$

Forbush decrease depends on:

Radius of ICME
Blanco et al (2013)

- Diffusion (transit) time Blanco etal (2013)

Diffusion coefficient:
e.g. Dumbovic et al (2012)
depends on the strength of B

- but how?

What is a typical diffusion coefficient in magnetic cloud and compared to normal solar wind??

The analytical model - results

Typical values:
Transit time 72 hours
MC radius 0.05 AU
Forbush decrease 6-7\%
\square
Diffusion coefficient $10^{18} \mathrm{~cm}^{2} / \mathrm{s}$
($10^{14} \mathrm{~m}^{2} / \mathrm{s}$)

Estimation based on theoretical consideration

$$
\begin{aligned}
& \max : \\
& a=0.02 \mathrm{AU} \\
& \Pi=96 \mathrm{~h}
\end{aligned}
$$

Typical:
min:
a=0.05 AU
$T=72 h$
$\mathrm{a}=0.2 \mathrm{AU}$
$\mathrm{TT}=12 \mathrm{~h}$

Estimation based on observational consideration

estimation of the diffusion coefficient range based on the empirical distribution of $t / a^{\wedge} 2$ for MCs derived from Richardson \& Cane (2010) list
estimated range for the diffusion coefficient:
Dmin $=7 * 10^{16} \mathrm{~cm}^{2} / \mathrm{s}$
$\operatorname{Dmax}=2,4 * 10^{20} \mathrm{~cm}^{2} / \mathrm{s}$

Typical D for unperturbed solar wind:

$$
D \sim 10^{21} \mathrm{~cm}^{2} / \mathrm{s}
$$

estimated range for the diffusion coefficient:
Dmin $=7 * 10^{17} \mathrm{~cm}^{2} / \mathrm{s}$
$\operatorname{Dmax}=1,2 * 10^{20} \mathrm{~cm}^{2} / \mathrm{s}$

The model vs observation: ground based measurements at Earth
Forbush decrease amplitude vs transit time

Forbush decrease measurements on Earth ($\mathrm{R} \sim 10 \mathrm{GV}$)) shifted to satellite values ($\mathrm{R}=0 \mathrm{GV}$) using empirical formula from Cane (2000)

Measurements from Helios I and II

Possible model changes...
diffusion time > transit time
(diffusion of particles starts even before CME liftoff)
Curve shifted by 24 hours

CME expansion observed remotely near the Sun, in IP space and in situ measurements!

Expansion vs diffusion - a very rough estimate

Could expansion be large "enough" factor to counteract diffusion??

```
U=6,5*R-2,4 MC density with heliocentric distance, Bothmer & Schwenn, 1998
U=7*R-2 Solar wind density with heliocentric distance
```

At 0.3 AU
$\mathrm{U}(\mathrm{CME})=117$ $\mathrm{U}(\mathrm{SW})=78$ $\mathrm{FD}=10 \%$$\longrightarrow$At 1 AU $\mathrm{U}(\mathrm{CME})=6,5$ $\mathrm{U}(\mathrm{SW})=7$ $\mathrm{FD}=44 \%$

Typical
At 0.3 AU transit $a=0.05 \mathrm{AU}$
time 60 h
At 1 AU
$D=10^{18} \mathrm{~cm}^{\wedge} 2 / \mathrm{s}$ \longrightarrow

$$
a=0.05 \mathrm{AU}
$$

FD $=100 \%$

$$
\text { FD }=10 \%
$$

$$
\mathrm{D}=10^{18} \mathrm{~cm}^{\wedge} 2 / \mathrm{s}
$$

(empty MC)

A very rough estimation: Expansion can "slow down" the diffusion by roughly 30%
ratio

Calculated based on relative
MC (plasma) density decrease
due to expansion with
respect to solar wind density decrease due to expansion (empirical relation from Bothmer \& Schwenn, 1998)

Calculated based on our model for the same distance/time as above

Expansion vs diffusion - a very rough estimate

A very rough estimation:
Expansion can "slow down" the diffusion by roughly 30%

CONCLUSIONS:

diffusion-based analytical model in present form qualitatively agrees with observation, but quantitatively suffers from several drawbacks

The qualitative aspect of the model could be improved by including observable facts regarding CMEs (e.g. expansion)

Thank you for your attention!

