SOLAR ERUPTIONS:

Physical mechanisms and processes governing initiation and propagation of CMEs and shocks

Bojan Vršnak

Hvar Observatory

Faculty of Geodesy, Kačićeva 26, HR-10000 Zagreb, Croatia

This work has been supported by Croatian Scientific Foundation under the project 6212 "Solar and Stellar Variability" (SOLSTEL).

Introduction

Observations: kinematics

LE

Observations: acceleration scaling

Scal	ings		_ non-pot. B ! (free en.)
<u>max</u>	<u>velocity</u> : $\rho v^2/2 \leq B^2/2\mu$	\Rightarrow	$v \leq v_A$
<u>acceleration</u> : $\rho a \leq B^2/2\mu r$		\Rightarrow	$a \leq \mathrm{v_A}^2/2r$
acc. <u>time</u> : $\tau = v/a = 2r/v_A$		\Rightarrow	$\tau = \tau_{\rm A} = d/v_{\rm A}$
acc. length: $\lambda = v^2/2a = r$		\Rightarrow	$\lambda = r$
٩R	$d = 10^5 \text{ km}, \text{ v}_{\text{A}} = 1000 \text{ km/s}$		
	$a = 10 \text{ km s}^{-2}; \ \tau = 100 \text{ s}; \ \lambda = 10^5$	km	
QP	$d = 10^6$ km, $v_A = 400-1000$ km/s		
	$a = 100 - 1000 \text{ ms}^{-2}$; $\tau = 15 - 40 \text{ min}$; $\lambda = 10^{6} \text{ km}$		

Observations: propagation phase

$$a = a_{L} - \gamma (v - w) |v - w|$$
$$v_{0} (a_{L} > 0) > v_{0} (a_{L} = 0)$$
$$a_{L} = k \Delta v_{0}$$

General concept: Forces & Energies

 $\Delta E_{\rm mag} = \Delta E_{\rm kin} + \Delta E_{\rm pot} + W_{\rm drag}$

IP propagation

- fast CMEs decelerate, slow CMEs accelerate
- deceleration of massive CMEs is weaker than in case of light CMEs
- deceleration is weaker when a CME propagates in high-speed solar wind
- CME cross section deforms ("pancaking", deformations related to high-stream streams)

3-D flux-rope models

"line-tying"

HXR, Ha

Mouschovias & Poland, 1978, ApJ 220, 675 Anzer & Pneuman, 1982, SPh 79, 1 Chen, J. 1989, ApJ 338, 453 Vrsnak, B. 1990, SPh 129, 295 Chen, J., Krall, J.: 2003, JGR 108, 1410

Driving force

 $X = \operatorname{tg} \theta = B_{\phi} / B_{//}$ $\Phi = l X/r, \ n = \Phi/2\pi$ $n = l / \lambda, \ n = const.$

 $a = a_{\rm L} - g - a_{\rm d}$ $a_{\rm L} = A (l/h + l/R - 2l/RX^2) \pm kI/lr$

$$A = \frac{\mu I^2}{4\pi M} = \frac{B_{\phi}^2}{\mu \rho l} = \frac{X^2 B_{\parallel}^2}{\mu \rho l} \approx \frac{v_A^2}{l} = \frac{l}{\tau_A^2} = l\omega^2$$

in the absence of reconnection:

 $\Phi_{\rm e} = {\rm const.} \propto I \, l \, [\ln(8R/r) - 2]$ $\Phi_{\rm i} = {\rm const.} \propto I \, l$

$$\Rightarrow I \propto l^{-1}, r \propto R, X \propto r/l$$

Loss of equilibrium

Loss of equilibrium (observations)

Eruption without reconnection

Observations: CME/flare relationship

Eruption with reconnection

CME acceleration and vxB proxy

Sun - 1AU relationship

Φ_{recon} versus Φ_{1AU}

Shock formation & propagation

Formation:
3D piston ("explosion phase";
"overexpansion")

Coronal propagation:

- lateral (piston-driven -> freely propagating)
- upward (driven: piston/bow)

Thank You For Your Attention!

