Coronal and Prominence Diagnostics based on Transverse Oscillations: Analytic Approach

Bojan Vršnak

Hvar Observatory, Croatia

This work has been fully supported by Croatian Scientific Fundation under the project 6212 „Solar and Stellar Variability“ (SOLSTEL).
Simple Wave \rightarrow Dense Obstacle

(prominence, streamer, pseudo-streamer)
Simple Wave \rightarrow Dense Obstacle

\[x_{\rho}(t) \]

\[\text{fixed} \]

\[\text{fixed} \]

\[\text{obstacle} \]
Simple Wave \rightarrow\text{Dense Obstacle}
Analytical Model: Basic Modes

“kink” mode

\[a(x,t) = -c_1 x + c_2 f(t) - c_3 v \]

\[[c_1 = \omega^2; \ c_3 = 2\gamma] \]

\[\omega_0 = \omega_k \]

\[\omega_{k2} = \omega_k / 2 \]

\[\omega_{k3} = \omega_k / 3 \]

“sausage” mode

\[\omega_0 = \omega_s \]

\[\omega_{s2} = \omega_s / 2 \]

\[\omega_{s3} = \omega_s / 3 \]

\[c_1 \sim B^2/\mu_0\rho R \sim 2xB^2/\mu_0\rho L^2 \]

\[\omega_k \sim v_{A0}/L \rightarrow T_k \sim 2\pi L/v_{A0} \]

Similarly: \(T_s \sim 2\pi D/v_{A0} \)

\[T_k/T_s \sim L/D \]
Analytical model: Oscillation Triggering

\[f(x) \propto \nabla B^2 \]

\[f(t) \]

\[y = -0.0019x^2 + 0.0216x - 0.0177 \]

\[R^2 = 0.9934 \]
Wave -> Obstacle

Damped Oscillator:

\[\ddot{x} + \omega^2 x + 2m\delta \dot{x}(t) + f(t) = 0 \]

Key parameters:
- maximum speed \(v_m \)
- acceleration length: \(x(v_m) = x_1 \)
- acceleration time \(t_1 \)
- initial acceleration \(a_0 \)
- period: \(P \)
- amplitude \(x \): \(x_m = x_2 \)
- [damping: \(\delta \)]
Analytical model: Oscillation Triggering

(neglecting damping)

Eq 1a: \[\frac{\rho_p v_m^2}{2} = \int_0^{x_1} (f-\omega^2 x)dx \]

[Eq 1b: \[\frac{\rho_p v_m^2}{2} = \int_{x_1}^{x_2} (f+\omega^2 x)dx \]]

Eq 2: \[w_m = V_{Ap} + 3v_m/2 \]

\[\omega = \frac{2\pi}{P} = 2\sqrt{2} \frac{V_{Ap}}{\lambda} \]

\[f = \rho_p a_0 = \left(B_{wp}^2 - B_p^2 \right) / 2\mu d_{wp} \]
Results: Prominence

\(\omega^2 = \left(\frac{2\pi}{P} \right)^2 = 8V_{Ap}^2 / \lambda^2 \), i.e., \(V_{Ap} = \frac{\pi^2 \lambda}{2P} \)

Eq 1: \(\rho_p = \frac{\omega^2 x_1^2}{(2a_0 x_1 - v_m^2)} \) & \(w_{pm} = V_{Ap} + 3v_m/2 \)

i.e., \(B_p = V_{Ap} \left(\mu \rho_p \right)^{1/2} \) & \(f = \rho_p a_0 \)

Eq 2 (for \(d_w >> d_p \)): \(d_{wp} = (V_{Ap} + 3v_m/2) t_1 \)

\(f = \frac{(B_{wp}^2 - B_p^2)}{2\mu d_{wp}} = \frac{(X_p^2 - 1) B_p^2}{2\mu d_{wp}} \)

\(B_{wp}^2 = B_p^2 + 2\mu fd_{wp} \), i.e., \(X_p^2 = 1 + 2\mu fd_{wp}/B_p^2 \)
Results: Corona

(for \(d_w >> d_p\)): \(d_{wp}/w_p = d_{wc}/w_c\), i.e., \(d_{wc} = d_{wp}w_c/w_p\)

\[\Delta \rho_p d_{wp} = \Delta \rho_c d_{wc}, \ i.e., \ \left(\frac{\rho_c}{\rho_p}\right)\left(X_c - 1\right)/\left(X_p - 1\right) = w_p/w_c\]

\[\left(w_c^2 - V_{Ac}^2\right) = \left(w_p^2 - V_{Ap}^2\right) w_p/w_c, \ i.e., \]

\[\left(\frac{V_{Ac}}{V_{Ap}}\right)^2 = \left(\frac{w_c}{V_{Ap}}\right)^2 - \left[\left(\frac{w_p}{V_{Ap}}\right)^2 - 1\right] \left(\frac{w_p}{w_c}\right)\]

\[\rho_c/\rho_p = \left(\frac{V_{Ac}}{V_{Ap}}\right)^2\]

\[B_c = V_{ac} (\mu \rho_c)^{1/2}\]