OBSERVATIONS AND MODELING OF SHOCKS

Bojan Vršnak, Tomislav Žic Hvar Observatory, Croatia

This work has been supported by *Croatian Scientific Foundation* under the project 6212 *"Solar and Stellar Variability"* (SOLSTEL).

History

- Activation of distant filamens (Dodson, 1949, ApJ, 110, 382)
- Type II radio bursts (Wild & McCready 1950 Aust.J.Phys. 3, 387)
- Moreton waves (Moreton & Ramsey 1960, PASP 72, 357)
- MHD (Uchida,1960, PASJ, 12, 376; ...;1974, Sol. Phys., 39, 431)
- EIT (Thompson, et al., 1998, GRL, 25, 2465)
- Numerical MHD
- SXR, Hel, coronagraphic...
- Since 2009/2010 > 200 papers

Observational signatures

- Type II radio bursts (Wild & McCready 1950 Aust.J.Phys. 3, 387)
- Moreton waves (Moreton & Ramsey 1960, PASP 72, 357)

KSO

Domain / Signature

timing, kinematics, intensity, spectral, morphology, ...

EUV, SXR, He, coronograph, radio,...

EIT/SoHO

NRH

Kinematics & evolution of perturbation

0.00

0

100000

200000

r (km)

300000

400000

500000

- Decreasing amplitude
- Broadening

Moreton/type II: fast-mode interpretation (after Uchida: Sol. Phys. 1968, 4, 30 → 1974, 39, 431)

Moreton = initial, large amplitude phase $(M_{ms} \approx 2 - 5)$ **Hel** = "missing link" **EIT** = distant, low amplitude phase $(M_{ms} \rightarrow 1)$ Type II burst = coronal signature $(M_{ms} \approx 1.1 - 2)$

Additional support for the fastmode interpretation:

- Limb morphology/evolution
- Directivity = refraction into low-Alfven velocity
- Winking filaments
- Interaction with coronal holes (reflection)
- "Oscillatory relaxation" of the chromosphere
- Homologous events

Modeling

(formation mechanisms, evolution, particle acceleration, radiation processes, coronal diagnostics, intreplanetary propagation, geoeffectiveness...)

- Analytical approach (basic principles)
 - (formation mechanisms and evolution)
- Numerical (MHD) simulations
 - 1.5-D, 2-D and 2.5-D MHD in a simplified configurations (general characteristics and basic principles)
 - fully 3-D in realistic configurations (detailed analysis of well observed events; influence of ambient structures; coronal diagnostics)
- Combined MHD/plasma-kinetic simulations (particle acceleration; radiation processes)

Formation mechanisms /terminology

2.5-D MHD simulations: Bow shock

Chen et al. ApJ 2002 572, L99

Pohjolainen et al. 2008 A&A 490,357

 $\begin{array}{c} 0.8 \\ 0.6 \\ (10) \\ 0.4 \\ 0.2 \\ 0.0 \end{array}$

Wang et al. 2015 ApJ 805, 114

2.5-D MHD simulations: Piston shock

Observations / 2.5-D MHD simulation

Patsourakos & Vourlidas 2009 ApJ 700, L182

Veronig et al. 2010 ApJ 743, L10 (EIS+AIA)

Veronig et al. 2010 ApJ 716, L57

Observations / 2.5-D MHD simulation

formation/driven phase \rightarrow freely prop.:

- steepening + ampl. increase \rightarrow shock
- deceleration; ampl. decrease
- corona/Moreton offset/delay

2.5-D MHD simulation: Moreton wave

downward-propagating switch-on shock

Bow/piston combination

Temmer et al. 2013 SPh 287, 441

Cheng et al. 2012 ApJ 745, L5

Observations / 3-D MHD simulation

Downs et al. 2012 (Downs et al.: ISSI-Bern)

1D-Piston shock

- plasma motion perpendicular to the magnetic field (impulsive acceleration)
- large amplitude wavefront is created
- shock forms after certain time/distance due to the nonlinear evolution of the perturbation (signal velocity depends on the amplitude!)

$$w(t) = w_0 + k \ u(t)$$

k=4/3, $w_0 = c_{s0}$ at $\beta >> 1$ k=3/2, $w_0 = v_{A0}$ at $\beta << 1$

Perpendicular 1-D Simple Wave

 $\beta = 0$: $w = v_{A0} + 3v/2$

Perp. 1-D freely-prop. simple wave

- different boundary conditions; $\beta = 0$
- different ambient conditions and obstacles (1D, 1.5D, 2D, 2.5D)

Simple wave - evolution

Conclusion

- upward (type II) = driven bow/piston shock
- lateral (EUV, He, Ha) = temporary piston ("CME overexpansion")
- the time/distance of the shock formation is determined by the source-region acceleration time-profile, and depends strongly on the spatial behavior of the Alfven speed
- to form a high-frequency type II burst and a Moreton wave (d₀~100 Mm; t₀~1 min), the source-region has to be compact, the expansion has to be very impulsive, and the Alfven speed has to decrease with distance rapidly
- Moreton wave appears only if shock is sufficiently strong; only upper chromosphere is affected

Thank you for your attention

Timing: The driver is ...?

Flare, CME, or...?

Main problems:

- flare = low β , i.e., restricted expansion ?
- CME = not impulsive enough ?
- flare/CME synchronization

Possibilities:

- Bow shock (CME, small ejecta)
- 3-D piston (CME-flanks, flare)
- "alternatives"

"1D/3D" piston (analytical approach)

conservation of the energy flux:

 $g(u) r_s^{\alpha} = \text{const.}$

 $(\alpha = 1 \rightarrow \text{cylindrical}; \alpha = 2 \rightarrow \text{spherical})$

(e.g., for $\beta >> 1$: $g(u) = \rho u^2 w$

• For the cylindrical coordinate system:

$$-r(t_0)g(u_0)\frac{1}{g^2(u)}\frac{\mathrm{d}g(u)}{\mathrm{d}t}\frac{\mathrm{d}u(t)}{\mathrm{d}t} = v_{A0} + ku$$

• For the spherical coordinate system: $-\frac{1}{2}r(t_0)\sqrt{g(u_0)}\left[g(u)\right]^{-3/2}\frac{\mathrm{d}g(u)}{\mathrm{d}t}\frac{\mathrm{d}u(t)}{\mathrm{d}t} = v_{A0} + ku$

[the flow velocity boundary condition: $u_0 = u(t_0) = v_{CME}(t_0)$]

$$v_{\rm A} = v_{\rm A}(r_0) \ (r_0/r)^{\alpha}$$

 $v_A = 500(r_0/r) \text{ km/s}$ [$r_0 = 100 \text{ Mm}$]

"1D/3D" piston (numerical approach)

- amplitude growth + steepening → shock formation
 - after t~0.15 ~const. amplitude/velocity phase

- amplitude growth + steepening → shock formation
- lower amplitude, formation of rarefaction region
- after t~0.08 decreasing amplitude/velocity

1.5D - cylindrical

Diagnostics

Type IIs:
- IP tracking of CMEs
- UC, IP diagnostics (v_A, v_{ms}, B, n, β)

Moreton waves: (quiet sun, low corona) effective $v_{ms} = 200-400$ km/s

