Forbush Decrease Prediction Based on Remote Solar Observations

M. Dumbović, B. Vršnak Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia

This work has been supported in part by *Croatian Scientific Foundation* under the project 6212 *"Solar and Stellar Variability"* (SOLSTEL).

$CME \rightarrow ICME \rightarrow FD$

CME and associated solar flare (LASCO/SOHO and AIA/SDO) $\begin{array}{c}
\mathsf{N} \\
\mathsf{T} \\
\mathsf{T} \\
\mathsf{M} \\
\mathsf$

ICME in situ parameters (SWEPAM and MAG/ACE)

FD (ground-based neutron monitor measurements)

CMEs lead to disturbances in the solar wind and IMF

Solar wind and IMF modulate CR flux

FORBUSH DECREASE PREDICTION PROBLEM

Aug 1-10, 2011

WSA-Enlil CME Model

What are we looking at?

CME speed, spatial extend, origin....

Propagation? Magnetic field structure?

Forbush decrease phyisical mechanism not solved

FORBUSH DECREASE PREDICTION APPROACH

Focus on L1 remote observations and CR flux (without any regard to in situ data) => What can be derived?

REMOTE SOLAR OBSERVATIONS → FD

CME-flare associations (frontsided events)

REMOTE SOLAR OBSERVATIONS → FD

187 CME-flare-CR flux variation associations (not necessarily FD!)

STATISTICAL ANALYSIS - METHOD

STATISTICAL ANALYSIS - METHOD

CME/flare parameters also grouped and averaged

STATISTICAL ANALYSIS - METHOD

Overlapping bins method – additional data points (statistics more significant)

STATISTICAL ANALYSIS - RESULTS

CME speed, v FD(%) is larger for faster CMEs

CME width, w FD(%) is larger for wider CMEs

STATISTICAL ANALYSIS - RESULTS

CME/flare position, r

FD(%) is larger for flares originating close to the center of the solar disc

flare Soft X peak intensity, f FD(%) is larger for stronger flares

CME-CME interaction level, i FD(%) is larger for interacting/multiple CMEs

THE MODEL

The distribution of observed Forbush decrease magnitudes (FD(%)) resembles the geometric distribution when the following association is made:

k = 1	FD(%) < 1
k = 2	1 < FD(%) < 3
k = 3	3 < FD(%) <6
k = 4	FD(%) > 6

Assumption: ensemble of events = ensemble of possible "states" for 1 event

Results of the statistical analysis are used to construct the probability distribution for each event

Probability distribution is constructed using geometric distribution fitting

THE MODEL

A constructed probability distribution changes with the solar parameters. However, regardless of the solar parameters the probability distribution always peaks for k=1, i.e. there is always the highest probability that there will be no Forbush effect.

Therefore, thresholds (T1-T5) have to be set and some conditions imposed on the probability distribution to forecast more (k=1,2,3,4) or less (k>1,k>2, k>3) specific Forbush decrease magnitudes

EVALUATION

Evaluation is performed counting the number of "hits" (observed FD equals predicted FD) on the **test sample** (187 CME-flare-FD sample used for the statistical analysis) and **evaluation sample** (independent sample of 42 CME-flare-FD events).

Forecast of less specific FD magnitudes (k<2, k<3, k<4)

SUMMARY & CONCLUSIONS

AIM: employ remote solar observations for Forbush effect forecast **METHOD:** statistical analysis, distribution fitting **THE MODEL:** empirical, statistical, probabilistic **INPUT:** remote solar observations of CME and associated solar flare **OUTPUT:** expected Forbush decrease magnitude (FD(%)) **DRAWBACKS:** as the forecast tends to be more specific it is less reliable ADVANTAGES: early warning (~1 day), input is not necessarily satellitedependent

Thank you for your attention!

ACKNOWLEDGMENTS:

This work has received funding from Croatian Science Foundation (project SOLSTEL)

