

Europska Unija Ulaganje u budućnost Projekt je sufinancirala Europska Unija iz Europskog socijalnog fonda

FORMATION OF CORONAL SHOCK WAVES

 ¹Slaven Lulić, ²Tomislav Žic,²Bojan Vršnak
¹ Karlovac University of Applied Sciences, Trg J.J. Strossmayera 9, HR-47000 Karlovac, Croatia
² Hvar Observatory, Faculty of Geodesy, University of Zagreb, Kačićeva 26, HR-10000 Zagreb, Croatia
e-mail: slulic@vuka.hr, tzic@geof.hr, bvrsnak@geof.hr

INTRODUCTION

- Numerical simulations of magnetosonic wave formation driven by an expanding cylindrical piston are performed to get better physical insight into the initiation and evolution of large-scale coronal waves caused by coronal eruptions
- Several very basic initial configurations are employed to analyze intrinsic characteristics of the MHD wave formation that do not depend on specific properties of the environment
- It turns out that these simple initial configurations result in piston/wave morphologies and kinematics that reproduce common characteristics of coronal waves
- In the initial stage the wave and the expanding source-region cannot be clearly resolved, i.e. a certain time is needed before the wave detaches from the piston
- Thereafter, it continues to travel as a so-called "simple wave"
- During the acceleration stage of the source-region inflation, the wave is driven by the piston expansion, so its amplitude and phase-speed increase, whereas the wavefront profile steepens

THE MODEL

- We consider perpendicular magnetosonic waves
- We focus on a planar and cylindrical geometry
- the magnetic field in the z-direction, whereas the x and y magnetic-field components, as well as the z-component of the velocity, are always kept zero (B_x=0, B_y=0, v_z=0)
- All quantities are invariant along the zcoordinate, i.e. we perform 2.5D simulations, where the input and the basic output quantities are the density ρ the momentum $m_x = \rho v_x$, $m_y = \rho v_y$ and the magnetic field B_z

THE MODEL

- All quantities are normalized, so that distances are expressed in units of the numerical-box length (L=1)
- velocities are normalized to the Alfvén speed v_A , and time is expressed in terms of the Alfvén travel time over the numerical-box length ($t_A=L/v_A$)
- We apply the approximation β=0, where β is the plasma-to-magnetic pressure ratio.
- The origin of the coordinate system is set at the numerical-box center

CONCLUSION

- Simulations show that in most cases impulsive shock wave is formed very close to the border areas of source so it is initially difficult to separate the two entities
- For large amplitude numerical results differ from the analytical theory, most likely due to the numerical resolution
- From the observation point of view, the cylindrical geometry is much more interesting, because it provides insight into the process of creating a shock wave driven by the expansion of the magnetic arcades, and includes an amplitude reduction due to energy conservation

ACKNOWLEDGMENTS

• We acknowledge the support of European Social Fund under the "PoKRet" project.

