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Short-term studies using Forbush 
decreases show conflicting results 

• 	posi%ve	correla%ons:	
Tinsley	&	Deen,	1991;		Pudovkin	&	Vertenenko,	1995;	Todd	&	Kniveton,	
2001;	2004;	Kniveton,	2004;	Harrison	&	Stephenson,	2006;	Svensmark	et	
al.,	2009;	Solovyev	&	Kozlov,	2009;	Harrison	&	Ambaum,	2010;	Harrison	et	
al.	2011;	Okike	&	Collier,	2011;	Dragić	et	al.	2011;	2013;	Svensmark	et	al.,	
2012;	Zhou	et	al.	2013;	Aslam	&	Badruddin,	2015	
	
• 	nega%ve	correla%ons:		
Wang	et	al.,	2006;		Troshichev	et	al.,	2008	
	
• 	no	correla%ons	or	inconclusive	results:	
	Pallé	&	Butler,	2001;	Lam	&	Rodger,	2002	;	Kristjánsson	et	al.,	2008	;	Sloan	
&	Wolfendale,	2008;	Laken	et	al.,	2009;	Čalogović	et	al.,	2010;	Laken	&	
Kniveton	2011;	Laken	et	al.,	2012;	Erlykin	and	Wolfendale,	2013	
	



Possible reasons 

• 	there	is	no	relaZonship	between	cosmic	rays	and	clouds	

• 	a	relaZonship	is	too	weak	to	detect	(signal	to	noise	raZo)	

• 	other	solar	parameters	may	interfere	with	the	results	(e.g.	
TSI,	UV)	–	problem	with	signal	a2ribu%on	
	
• 	relaZonship	exists	but	it	is	constrained	by	the	atmospheric	
condiZons	at	the	Zme	

So how to test the CR-cloud link reliably ? 



How to isolate the signal using composite? 

•  Successive	averaging	of	events	(in	Zme	or	space)	
•  Used	to	increase	signal-to-noise	raZo	(SNR)	
•  Enable	detecZon	of	small	amplitude	signal	against	large	variability	

Superposed	epoch	analysis	or	condiZonal	sampling	



Cosmic	ray	
(CR)	flux	

TSI	

ISCCP	cloud	cover	

TSI influences the cloud cover? 

•  Composite (superposed 
epoch) analysis of 123 Forbush 
decrease events 
•   cloud cover decreases about 
2 days before the onset of 
Forbush decrease (CR flux) 

Laken	et.	al.,	2011	(JGR)	
	



TSI data and composite samples 

•  AcZve	Cavity	
Radiometer	Irradiance	
Monitor	(ACRIM)	
reconstrucZon,	1978-
present,	daily	values	

•  3	composite	samples:	
• 	largest	increases	in	
TSI	(19	events)	
• 	largest	decreases	in	
TSI	(48	events)	
• 	largest	decreases	in	
TSI	without	
significant	CR	
variaZons	(37	events)	

	
Laken	&	Čalogović,	2011	(GRL)	

	



GCR and F10.7 (EUV) composites 

GCR	

UV	

•  CR	flux	data	–	Climax	
neutron	monitor	
(Rc=2.99GeV)	

•  F10.7	(2800Mhz)	data	–	
proxy	of	extreme	ultraviolet	
solar	acZvity	(EUV)	

•  all	composites	(TSI,	CR,	
F10.7)	correlated	with	
corresponding		cloud	data	
using	a	lag	of	20	days	



Cloud data 
•  InternaZonal	Satellite	Cloud	

Climatology	Project	(ISCCP)	D1	
dataset,	IR	data,		1983-2008,	
temporal	resoluZon	3h,	equal-area	
grid	(280x280km2)	

•  3	different	alZtude	levels:	high	
(>6.5km),	middle	(3.2	–	6.5km)	and	
low	(0	–	3.2km)	clouds	

•  daily	averaged	

•  area-averaging was applied for different regions: 
•  global 
•  low latitudes (<45°) 
•  high latitudes (>45°) 
•  regions over land 
•  regions over ocean 



Monte Carlo tests   

•  employed	to	establish	the	threshold	significance	values	for	the	
correlaZon	coefficients	(r)	

•  for	each	parameter	100	000	randomly	generated	r		

•  Shapiro-Wilk	test	of	
normalcy:	all	r	are	
normally	distributed	(W	
=	0.996,	p	=	4.8x10-10)	

•  staZsZcal	significance	
set	by	two-tailed	0.95	
percenZle	MC	
generated	r	values	



Cloud composites – low and high latitudes 

•  no 
significant 
correlations 
with TSI, 
CR and UV 
composites	
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Cloud composites – ocean and land 

•  no 
significant 
correlations 
with TSI, 
CR and UV 
composites	
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If some climate signal is found - it should 
be properly attributed to solar forcing  

temperature	

Volcanic	forcing	

Solar	forcing	

Rypdal,	2014	

•  Other	external	and	internal	factors	influencing	the	climate	parameters	
should	be	idenZfied	è	eg.	aqribuZon	by	mulZple	regression	or	models	
(if	possible)	

•  Last	few	solar	cycles	coincidentally	match	with	strong	volcanic	erupZons	
(volcanic	forcing)			



Possible methodological reasons 
for conflicting results 

•  unappropriate	or	no	data	filtering	

•  wrong	staZsZcal	assumpZons	and/or	improper	use	of	
staZsZcal	tools		

•  “quality”	and	properZes	of	cloud	datasets	(autocorrelated	
data)	

So	how	to	test	the	CR-cloud	link	reliably	?	



Cosmic ray flux and cloud data 

Global	and	daily	
averaged	ISCCP	D1	(IR-
detected)	cloud	cover	
(%)	

Daily	averaged	
normalized	cosmic	ray	
flux	(%)	
calculated	from	Climax	
Colorado	and	Moscow	
neutron	monitors	
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... to minimize variations in data unconnected with hypothesis 
testing (high-pass filtering) 

Composites should be made with anomalies 
rather than raw data... 

Differences	(b),	
indicates	remaining	
non-linear	variaZons	in	
composite	from	
synopZc	scale	
variability.	If	not	
removed,	this	will	bias	
results	of	composites.		

Comparision	of	two	methods	to	remove	long-term	variaZons	(n=20):	linear	trends	
removed	(black),	and	a	only	21-day	running	mean	removed	
a) one random composite over t±40  b) 100,000 composites at t0 

Proper	selecZon	of	
smooth	filter	width	is	
needed	to	prevent	
signal	aqenuaZon	
(duraZon	of	searched	
signal	is	1/3rd	width	of	
smooth	filter)		



Overshoot / undershoot effects by filtering the 
data with different filters (running mean) 

For	deviaZons	at	
Zmescales	of	aprox.	
1/3rd	the	width	of	the	
smooth	filter,	
disturbance	aqenuaZon	
is	very	small	or	neglible.	



Calculate thresholds for statistical 
significance with Monte Carlo approach 

By	generaZng	large	populaZons	of	random	events	idenZcal	in	design	to	
a	composite	with	real	events,	the	probability	(p)	of	obtaining	a	given	
value	by	chance	in	a	composite	with	real	events	can	be	accurately	
known.	

	DistribuZon	of	daily	anomalies	

This	has	advantages	over	
tradiZonal	tests	(e.g.	T/U	
tests),	as	it	requires	no	
minimum	sample	size	or	
specific	distribuZon,	and	
it	doesn’t	need	
adjustment	for	
autocorrela%on.	
	

Laken & Čalogović, SWSC, 2013 
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How many Monte Carlo iterations are 
enough to get reliable significance 

intervals? 



a b

C
R

 fl
ux

 a
no

m
al

y 
(%

)

t (days since CR flux minimum)
0 20 40-20-40

0

-2

-4

2

C
lo

ud
 c

ov
er

 a
no

m
al

y 
(%

)

1.0

0.5

0.0

-0.5

-1.0

t (days since CR flux minimum)
0 20 40-20-40

Composites and significance intervals 

daily	averaged	CR	flux	 global	cloud	cover	anomalies		

Anomalies	
(daily	mean	–	
21-day	
running	
mean)	

±1.96	
Standard	
error	of	mean	
(SEM)		
	

Confidence	
intervals	at	
p0.05	and	
p0.01	
levels	
(obtained	from	
PDF	of	10,000	
Monte	Carlo	
simulaZons)	

Composites	consists	of	44	events	
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How to obtain a false positive  

	Cookbook…	
	
•  IdenZfy	a	base	or	‘undisturbed’	period	

before	the	key	events,	that	represent	
‘normal	condiZons’	(e.g.	shown	
example	uses	t-10	-	t-5)	

•  Calculate	deviaZons	against	this	
‘undisturbed’	period	(i.e.	subtract	every	
t	point	from	mean	of	‘normal	
condiZons’)	

•  StaZsZcally	compare	the	data	to	the	
‘undisturbed’	period	(e.g.	T-test,	or	
even	MC	from	the	base	period	[red	
lines	p0.05	p0.01])	

Normaliza%on	to	base	period	reduces	popula%on	variability	towards	base	
period,	narrowing	confidence	intervals.		
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How to avoid a false positive  

Overcoming bias with  
Monte Carlo (MC): 

 
•  Use confidence intervals from 

PDFs obtained with MCs, 
calculated independently for 
each t point  

•  Autocorrelation effects are 
automatically taken in to 
account (random samples in 
the MC all treated with an 
identical approach to the 
analyzed composite [blue lines 
p0.05 p0.01]) 

Two different results for t+5 (the above with a mean p<0,05 and 
the earlier, with a mean 0.01>p<0.05 so which is correct?   



Big variability in the clouds can be often 
mixed with the expected signal! 

Svensmark	et	al.	2012,	ACPD	

Data	NORMALIZED	between	period	
of	day	-15	and	day	-5	

GCR	
(Climax	NM)	

MODIS	CF	
(5	EVENTS)	

Laken,	Čalogović,	Beer	and	Pallé	(2012),	ACPD	

Dashed/doqed	lines	show	correctly	adjusted	2	
and	3σ	level	–	calculated	from	10,000	MC	
simulaZons	

95	percenZle(2σ)	

		99	percenZle	(3σ)	

Proper	sta%s%cal	tests	(MC	simula%ons	)	are	
needed	to	asses	the	correct	sta%s%cal	significance!	



Extension to longer analysis periods reveals no 
unusual variability in clouds during Fd events 

Laken,	Čalogović,	Beer	and	
Pallé	(2012),	ACPD	

±20	day	
analysis	
period	

MODIS	Liquid	cloud	fracZon	changes	using	5	
biggest	Fd	events	from	Svensmark	et	al.	(2012)		

±100	day	
analysis	
period	

Values	are	anomalies	from	21-
day	moving	averages	(i.e.	mean	
of	each	day	subtracted	from	21-
day	moving	average).	
	
Dashed	and	doqed	lines	
indicate	the	95th	and	99th	
(two-tailed)	percenZle	
confidence	intervals	
respecZvely	calculated	from	
100,000	Monte	Carlo	
simulaZons.	



Just one event (and eventually outlier) 
can influence the whole composite 

Laken,	Čalogović,	Beer	and	
Pallé	(2012),	ACPD	

MODIS	cloud	fracZon	composite	for	
Fd	events	1,	3,	4,	5,	6	ranked	by	
Svensmark	et	al.	2012	

By	replacing	the	event	2	with	event	6	
there	are	no	significant	changes	in	
the	composite!	

Individual	5	Fd	events	ploqed	against		
event	2	(19.1.2005)	where	is	clear	that	
all	significance	in	Svensmark	
composite	comes	from	event	2.	



Noise levels of data govern detectability of a signal. The noise varies with 
both the spatial area (a) that is averaged, and the number of composite 
events (n). 
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possible	to	see	how	large	a	and	n	would	need	to	be	at	minimum	to	see	a	
hypothesized	effect.	

Size of sample area and number of 
events impact the noise 
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Majority of Fd studies use less than 50 
events (n<50) 

Studies	using	only	strong	Fd	events	have	usually	less	than	10	events	

Size	of	Europe	(2%)	



DTR shows response to Fd events? 

• 	Dragić	et	al.	(2011)	used	
composite	of	37	Fd	events	
(>7%)	that	show	
significant	increase	in	DTR	
→	support	for	GCR-cloud	
hypothesis		

•  Surface	level	Diurnal	Temperature	Range	(DTR)	→	effecZve	proxy	for	
cloud	cover	(indirect	cloud	data)	

•  DTR	has	longer	Zme	span	than	satellite	cloud	observaZons	→	allows	
to	have	the	larger	number	of	Forbush	events	



Analysis of Dragić et al. (2011) results 

Analysis	of	the	same	data	as	in	
Dragic	et	al.	(DTR	data	and	37	
Forbush	events)	shows	that	
authors	didn’t	esZmate	correctly		
staZsZcal	significance	using	t-test	
and	certain	staZsZcal	
assumpZons.	Significance	intervals	calculated	from	

100	000	Monte	Carlo	simulaZons	(using	
21-day	running	average)	

Dragić	et	al.	
NormalizaZon	
of	data	in	period	
from	t-10	to	t-5	
and	99%	
significance	
intervals	

Laken,	Čalogović,	Shahbaz	and	Pallé	(2012),	JGR	



Detaljna analiza pokazuje da nema odziva 
DTR-a tijekom Forbushevih smanjenja 

Laken,	Čalogović,	Shahbaz	and	Pallé	(2012),	JGR	

n=267	 n=29	

99th	and	95th	percenZle		confidence	
intervals	(doqed	and	dashed	lines)	
are	calculated	from	100,000	MC	
simulaZons			

NCEP/NCAR	reanalysis	data		
(60°N	–	60°S,	land-area	pixels	only)	

DTR	from	210	meteorological	staZons	
(77.7°N	–	34.7°N,	179.4°W	–	170.4°E)	

TSI	flux	from	the	PMOD	
reconstrucZon	

Climax/Moscow	NM	



DTR shows no response to 
GCR or solar activity 

Laken,	Čalogović,	Shahbaz	and	Pallé	(2012),	JGR	

SpaZal	distribuZon	of	DTR	
anomalies	between	day	+3	and	+6	

Long	term	analysis	(60	years	of	data)	shows	
also	that	there	is	no	significant	periodiciZes	
in	DTR	data	connected	to	the	solar	
periodiciZes	(e.g.	11-year,	1.68-year	).	

In	conclusion,	there	is	no	evidence	
to	support	claims	of	a	link	between	
DTR	and	solar	ac%vity.		



Various issues that contributed 
to conflicting results of studies 

•  Data	filtering	-	interference	from	variability	in	data	at	Zme	scales	
greater	than	those	concerning	hypothesis	tesZng,	which	may	not	
necessarily	be	removed	by	accounZng	for	linear	trends	over	the	
composite	periods	

•  normaliza%on	procedures	which	affect	both	the	magnitude	of	
anomalies	in	composites,	and	esZmaZons	of	their	significance	

•  the	applicaZon	of	staZsZcal	tests	unable	to	account	for	
autocorrelated	data		

•  issues	of	signal-to-noise	ra%os	connected	to	spaZo-temporal	
restricZons	(e.g.	by	decreasing	analyzed	region	size	the	searched	
signal	may	be	buried	in	noise)	



Identification of solar—terrestrial 
links has many difficulties 

•  Weather	and	climate	are	highly	variable	over	all	Zme-scales	-	only	a	
small	fracZon	of	this	variance	(signal)	could	reasonably	be	ascribed	to	
solar	acZvity	(rest	is	considered	as	noise).	

•  StaZsZcal	properZes	of	climaZc	datasets	are	unstable	(non-sta%onary)	
–	significant	correlaZons	over	short	Zmescales	may	disappear.		

•  climaZc	data	are	spaZally	autocorrelated	->	number	of	observaZons	
globally	doesn’t	reduce	uncertainty	->	no	good	subsZtute	for	long	
duraZon	datasets.	Problem:	modern	satellite-era	datasets	only	cover	
around	three	solar	cycles.	



Identification of solar—terrestrial 
links has many difficulties 

•  a	posteriori	selec%on	of	data	(“cherry	picking”)	–	one	sample	may	have	
a	staZsZcally	significant	correlaZon,	but	drawn	from	a	larger	quanZty	
of	data	which	doesn't	show	the	same	relaZonship.	

•  Exact	(amplifying)	mechanisms	linking	solar	acZvity	to	climate	are	sZll	
poorly	understood	->	not	always	possible	to	evaluate	them	with	
models	(not	testable	=	unscienZfic)	

•  Most	studies	are	purely	sta%s%cal	->	tests	of	significance	may	be	
accompanied	by	ambiguiZes	in	data	selecZon	and	treatment,	applied	
methods,	or	assumpZons—	including	human	bias,	autocorrelaZons,	
smoothing,	and	post-hoc	hypotheses.		

•  Many	of	these	issues	already	described	by	Pi2ock	1979,	1978		



•  Importance	of	reliable	methods	and	staZsZcal	tests	to	overcome	
some	of	menZoned	difficulZes:	communal	analysis	approach	

•  ImplementaZon	of	robust	significance	tesZng	(e.g.	MC	method)	
•  Python	(completely	free,	all	computer	pla�orms)	
•  iPython:	code	in	small	editable	units,	descripZons	and	figures	

between	code.	Rapidly	shared	and	replicated,	runs	in	any	internet	
browser	

•  Simple	to	run	code	on	remote	computers	(cloud)	
•  Public	Git	repositories	for	instant	download	of	analysis	or	upload	

tracked	changes	
•  Allows	even	low	skill	programmers	to	follow	the	analysis.	Viewed	

online,	any	system	(only	internet	browser	needed)	
•  Using	FigShare	(DOI	number)	code	can	be	added	as	supplement	to	

publicaZons	

Open-access coding solutions 



iPhyton environment 

Notebook	viewer	on-line:	
hqp://Znyurl.com/composite-methods	
	
GitHub	repository	(download	and	run	it	locally):	
hqps://github.com/benlaken/Composite_methods_LC13	



•  Satellite	cloud	esZmates	are	fraught	with	limitaZons	and	calibraZon	
errors,	meaning	long-term	analysis	is	problema%c	at	best,	and,	as	in	the	
case	of	commonly	used	ISCCP	data,	is	fundamentally	flawed.	

•  Co-variance	of	solar-related	parameters	(UV,	TSI,	CR	flux,	solar	wind)	make	
signal	a2ribu%on	difficult.	

•  Climate	variability	and	volcanic	ac%vity,	operaZng	over	Zme-scales	
similar	to	the	solar	cycle,	make	disambiguaZng	causes	of	cloud	cover	
change	difficult.	

•  Composite	analysis	of	FD	and	GLE	events	is	o�en	compromised	by	the	
difficulZes	of	staZsZcal	analysis	of	autocorrelated	data.	This	is	
compounded	by	the	applicaZon	of	inappropriate	and	black-box	staZsZcal	
tests.	

•  Changing	signal-to-noise	ra%os	connected	to	spa%o-temporal	restric%ons	
in	composites	have	generally	not	been	sufficiently	taken	into	account	in	
composite	studies,	leading	to	widespread	false-posiZve	staZsZcal	errors.	

Conclusions 



•  Methodological	differences	and	inappropriate	staZsZcs	in	composite	
analysis	can	produce	conflicZng	results.	These	are	the	likely	source	of	
discrepancies	between	cosmic	ray	–	cloud	composite	studies.	

•  Present	cloud	datasets	are	limited	to	detect	a	small	changes	in	cloud	
cover	as	well	to	detect	the	regional	cloud	changes	(<several	thousand	
km)	due	to	the	big	natural	cloud	variability	(noise).	Thus,	localized	
and/or	small	effect	on	cloud	cover	can’t	be	completely	excluded.	

•  No	compelling	evidence	to	support	a	global	cosmic	ray-link	using	the	
satellite	cloud	data	(ISCCP,	MODIS)	with	long-	or	short-term	(Fd)	
studies.	

•  If	cosmic	ray-cloud	relaZonship	is	second	order	(small	and	dynamic	
changes	to	cloud	cover	over	certain	regions)	then	it	may	be	very	
difficult	to	detect	it	with	currently	available	techniques	and	datasets.	

Conclusions 



Thank	you	for	your	a2en%on!	
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