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Short-term studies using Forbush
decreases show conflicting resuits

* positive correlations:

Tinsley & Deen, 1991; Pudovkin & Vertenenko, 1995; Todd & Kniveton,
2001; 2004; Kniveton, 2004; Harrison & Stephenson, 2006; Svensmark et
al., 2009; Solovyev & Kozlov, 2009; Harrison & Ambaum, 2010; Harrison et
al. 2011; Okike & Collier, 2011; Dragic¢ et al. 2011; 2013; Svensmark et al.,
2012; Zhou et al. 2013; Aslam & Badruddin, 2015

* negative correlations:
Wang et al., 2006; Troshichev et al., 2008

* no correlations or inconclusive results:

Pallé & Butler, 2001; Lam & Rodger, 2002 ; Kristjansson et al., 2008 ; Sloan
& Wolfendale, 2008; Laken et al., 2009; Calogovi¢ et al., 2010; Laken &
Kniveton 2011; Laken et al., 2012; Erlykin and Wolfendale, 2013
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Possible reasons

* there is no relationship between cosmic rays and clouds

* a relationship is too weak to detect (signal to noise ratio)

e other solar parameters may interfere with the results (e.g.
TSI, UV) — problem with signal attribution

* relationship exists but it is constrained by the atmospheric
conditions at the time
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How to isolate the signal using composite?

Superposed epoch analysis or conditional sampling
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* Successive averaging of events (in time or space)
* Used to increase signal-to-noise ratio (SNR)
* Enable detection of small amplitude signal against large variability
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GCR flux (36)

TSI (W/m?)

TSI influences the cloud cover?

e 1 Cosmic ray ISCCP cloud cover
" Y ¢ (CR) flux «
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« Composite (superposed
epoch) analysis of 123 Forbush
decrease events

« cloud cover decreases about
2 days before the onset of
Forbush decrease (CR flux)

Laken et. al., 2011 (JGR)
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TSl data and composite samples
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Laken & Calogovi¢, 2011 (GRL)

Active Cavity
Radiometer Irradiance
Monitor (ACRIM)
reconstruction, 1978-
present, daily values

3 composite samples:

e largest increases in
TSI (19 events)

* largest decreases in
TSI (48 events)

* largest decreases in
TSI without
significant CR
variations (37 events)
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GCR and F10.7 (EUV) composites
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Cloud data

* International Satellite Cloud
Climatology Project (ISCCP) D1 (\OUDINESS DATA (2.5°
dataset, IR data, 1983-2008, F 2 A RN
temporal resolution 3h, equal-area
grid (280x280km?)

« 3 different altitude levels: high
(>6.5km), middle (3.2 — 6.5km) and
low (0 — 3.2km) clouds

e daily averaged

\»\ {‘?f_“g:'—r-"' = = =~
cloud cover

50 100

« area-averaging was applied for different regions:
 global
» low latitudes (<45°)
 high latitudes (>45°)
* regions over land
* regions over ocean
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Monte Carlo tests

 employed to establish the threshold significance values for the
correlation coefficients (r)

* for each parameter 100 000 randomly generated r

Monte carlo histogram for
TSI increase vs ISCCP High clouds / high latitudes
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Laken & Calogovi¢, 2011 (GRL)

Cloud composites - low and high latitudes
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Laken & Calogovi¢, 2011 (GRL)

ocean
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Cloud composites - ocean and land

no
significant
correlations
with TSI,
CR and UV
composites
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If some climate signal is found - it should
be properly attributed to solar forcing

e Other external and internal factors influencing the climate parameters
should be identified = eg. attribution by multiple regression or models
(if possible)

* Last few solar cycles coincidentally match with strong volcanic eruptions
(volcanic forcing)
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Possible methodological reasons
for conflicting results

* unappropriate or no data filtering

e wrong statistical assumptions and/or improper use of
statistical tools

e “gquality” and properties of cloud datasets (autocorrelated
data)

So how to test the CR-cloud link reliably ?
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Cosmic ray flux and cloud data
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Composites should be made with anomalies

rather than raw data...

-« t0 minimize variations in data unconnected with hypothesis
testing (high-pass filtering)

Comparision of two methods to remove long-term variations (n=20): linear trends
removed (black), and a only 21-day running mean removed

b) 100,000 composites at &,

a) one random composite over t,,q
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Differences (b),
indicates remaining
non-linear variations in
composite from
synoptic scale
variability. If not
removed, this will bias

results of composites.
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Proper selection of
smooth filter width is
needed to prevent
signal attenuation
(duration of searched
signal is 1/3rd width of
smooth filter)
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Overshoot /| undershoot effects by filtering the
data with different filters (running mean)
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Calculate thresholds for statistical
significance with Monte Carlo approach

By generating large populations of random events identical in design to
a composite with real events, the probability (p) of obtaining a given
value by chance in a composite with real events can be accurately
known.

Distribution of daily anomalies

o) 4y [ [ ' : ' :
p0.025/p0.975 ) ? This has advantages over

> 008 0ok | traditional tests (e.g. T/U
2 | : tests), as it requires no
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(U . . . . .
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CR flux anomaly (%) Laken & Calogovi¢, SWSC, 2013
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How many Monte Carlo iterations are
enough to get reliable significance

intervals?
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Laken & Calogovi¢, SWSC, 2013
COMPOSITE ANALYSIS AND MONTE CARLO METHODS - AN EXAMPLE WITH FORBUSH DECREASES AND CLOUD COVER | ERCA 2016 | 26.1.2016 | GRENOBLE, FRANCE




(@)

CR flux anomaly (%)

1
N

Composites and significance intervals

daily

aver
T T

aged CR flux

[

[ TR TR R AT |

1.0

o
o

=
o

Cloud cover anomaly (%)

1

1
©
(&)

-20
t (days since CR flux minimum)

0 20

Composites consists of 44 events

global cloud cover anomalies

+1.96

T T T I

T

T

T

[

T

T

T

[

T

T

T

Standard
{ - error of mean
(SEM)

Anomalies
(daily mean —

- ;/ 21-day

running
mean)

Confidence
intervals at

™ p0.05 and

™ p0.01
1 levels
(obtained from

1

-20
t (days since CR flux minimum)

20

PDF of 10,000
Monte Carlo
simulations)

40

COMPOSITE ANALYSIS AND MONTE CARLO METHODS - AN EXAMPLE WITH FORBUSH DECREASES AND CLOUD COVER | ERCA 2016 | 26.1.2016 | GRENOBLE, FRANCE



Cloud cover anomaly (%)
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How to obtain a false positive
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CR flux anomaly (%)
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t (days since CR flux minimum)

0

|Identify a base or ‘undisturbed’ period
before the key events, that represent
‘normal conditions’ (e.g. shown
example uses t ;- t)

Calculate deviations against this
‘undisturbed’ period (i.e. subtract every
t point from mean of ‘normal
conditions’)

Statistically compare the data to the
‘undisturbed’ period (e.g. T-test, or
even MC from the base period [red
lines p0.05 p0.01])

Normalization to base period reduces population variability towards base

period, narrowing confidence intervals.
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How to avoid a false positive

Cloud cover anomaly (%)

CR flux anomaly (%)
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t (days since CR flux minimum)

Overcoming bias with
Monte Carlo (MC):

Use confidence intervals from
PDFs obtained with MCs,
calculated independently for
each t point

Autocorrelation effects are
automatically taken in to
account (random samples in
the MC all treated with an
identical approach to the
analyzed composite [blue lines
RS P0.01 1)

Two different resulilts for t_ . (the above with a mean p<0,05 and
the earlier, with a mean 0.01>p<0.05 so which is correct?
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Ct (Unitless)

Big variability in the clouds can be often
mixed with the expected signal!

Svensmark et al. 2012, ACPD
Cloud Fraction
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Liquid cloud fraction (%)

Laken, Calogovi¢, Beer and Pallé (2012), ACPD
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Dashed/dotted lines show correctly adjusted 2
and 3o level — calculated from 10,000 MC

simulations

Proper statistical tests (MC simulations ) are
needed to asses the correct statistical significance!
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Extension to longer analysis periods reveals no
unusual variability in clouds during Fd events

MODIS Liquid cloud fraction changes using 5
biggest Fd events from Svensmark et al. (2012)

. Values are anomalies from 21-
£20 day : S 7] /\/v\ /\/\ /\/A day moving averages (i.e. mean
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Laken, Calogovi¢, Beer and
Pallé (2012), ACPD
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Just one event (and eventually outlier)
can influence the whole composite

Liquid cloud fraction (%)
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MODIS cloud fraction composite for
Fd events 1, 3, 4, 5, 6 ranked by
Svensmark et al. 2012

By replacing the event 2 with event 6
there are no significant changes in
the composite!

Individual 5 Fd events plotted against
event 2 (19.1.2005) where is clear that
all significance in Svensmark
composite comes from event 2.

Laken, Calogovi¢, Beer and
Pallé (2012), ACPD
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Size of sample area and number of
events impact the noise

Noise levels of data govern detectability of a signal. The noise varies with
both the spatial area (a) that is averaged, and the number of composite
events (n).

‘Noise’ indicated

by 97.5t

percentile values  _ 104 L=
from 10,000 Y | s S
random S i O
composites of e i
varying a and n 3 - ok .
size. e S
Each point of grid & . g 2
represents R R
another 2 0.1 3 Sk
independentset -
of 10,000 MC =
simulations
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Majority of Fd studies use less than 50
events (n<50)
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Studies using only strong Fd events have usually less than 10 events
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Dragic DTR deviation (°C)

DTR shows response to Fd events?

Surface level Diurnal Temperature Range (DTR) — effective proxy for

cloud cover (indirect cloud data)

DTR has longer time span than satellite cloud observations — allows

to have the larger number of Forbush events
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| Figure 3 of Dragic et al. (2011)
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* Dragic¢ et al. (2011) used
composite of 37 Fd events
(>7%) that show
significant increase in DTR
— support for GCR-cloud
hypothesis
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Dragic DTR deviation (°C)

Analysis of Dragic¢ et al. (2011) results
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Analysis of the same data as in
Dragic et al. (DTR data and 37
Forbush events) shows that
authors didn’t estimate correctly
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e TR and certain statistical

Significance intervals calculated from
100 000 Monte Carlo simulations (using
21-day running average)

assumptions.

Laken, Calogovi¢, Shahbaz and Pallé (2012), JGR
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GCR flux ( %)

TSI flux (W/m -2)

Detaljna analiza pokazuje da nema odziva
DTR-a tijekom Forbushevih smanjenja
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Laken, Calogovi¢, Shahbaz and Pallé (2012), JGR
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DTR shows no response to
GCR or solar activity

Spatial distribution of DTR
anomalies between day +3 and +6

Long term analysis (60 years of data) shows
also that there is no significant periodicities
in DTR data connected to the solar
periodicities (e.g. 11-year, 1.68-year ).

-2.5 -1.5 -0.5 0.5 1.5 25

In conclusion, there is no evidence
to support claims of a link between
DTR and solar activity.
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Various issues that contributed
to conflicting results of studies

* Data filtering - interference from variability in data at time scales
greater than those concerning hypothesis testing, which may not
necessarily be removed by accounting for linear trends over the
composite periods

* normalization procedures which affect both the magnitude of
anomalies in composites, and estimations of their significance

* the application of statistical tests unable to account for
autocorrelated data

* issues of signal-to-noise ratios connected to spatio-temporal
restrictions (e.g. by decreasing analyzed region size the searched
signal may be buried in noise)
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Identification of solar—terrestrial
links has many difficulties

 Weather and climate are highly variable over all time-scales - only a
small fraction of this variance (signal) could reasonably be ascribed to
solar activity (rest is considered as noise).

e Statistical properties of climatic datasets are unstable (non-stationary)
— significant correlations over short timescales may disappear.

e climatic data are spatially autocorrelated -> number of observations
globally doesn’t reduce uncertainty -> no good substitute for long
duration datasets. Problem: modern satellite-era datasets only cover
around three solar cycles.
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Identification of solar—terrestrial
links has many difficulties

* a posteriori selection of data (“cherry picking”) — one sample may have
a statistically significant correlation, but drawn from a larger quantity
of data which doesn't show the same relationship.

e Exact (amplifying) mechanisms linking solar activity to climate are still
poorly understood -> not always possible to evaluate them with
models (not testable = unscientific)

* Most studies are purely statistical -> tests of significance may be
accompanied by ambiguities in data selection and treatment, applied
methods, or assumptions— including human bias, autocorrelations,
smoothing, and post-hoc hypotheses.

* Many of these issues already described by Pittock 1979, 1978
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Open-access coding solutions

 Importance of reliable methods and statistical tests to overcome
some of mentioned difficulties: communal analysis approach

* Implementation of robust significance testing (e.g. MC method)
 Python (completely free, all computer platforms)

* iPython: code in small editable units, descriptions and figures
between code. Rapidly shared and replicated, runs in any internet

browser
e Simple to run code on remote computers (cloud)

e Public Git repositories for instant download of analysis or upload
tracked changes

* Allows even low skill programmers to follow the analysis. Viewed
online, any system (only internet browser needed)

e Using FigShare (DOl number) code can be added as supplement to
publications
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Composite analysis with Monte Carlo methods: an example with cosmic rays
and clouds

Benjamin A. Laken & Jasa Calogovié

This is an IPython notebook version of Laken & Calogovic, 2013, doi: 10.1051/swsc/2013051, published in the Journal of Space Weather and Space
Climate. Originally, this work was supported by |IDL code, succeeded by this notebook.

Code in Python 3, by B. Laken

Cite this article as: Laken B.A. & Calogovi¢ J: Composite analysis with Monte Carlo methods: an example with cosmic rays and clouds. J. Space Weather
Space Clim., 2013, 3, A29, doi:http://dx.doi.org/10.1051/swsc/2013051.

Abstract

The composite (superposed epoch) analysis technique has been frequently employed to examine a hypothesized link between solar activity and the Earth's
atmosphere, often through an investigation of Forbush decrease (Fd) events (sudden high-magnitude decreases in the flux cosmic rays impinging on the upper-
atmosphere lasting up to several days). This technique is useful for isolating low-amplitude signals within data where background variability would otherwise
obscure detection. The ication of analyses to in the possible impacts of Fd events involves a statistical examination of time-dependent
atmospheric responses to Fds often from aerosol and/or cloud datasets. Despite the publication of numerous results within this field, clear conclusions have
yet to be drawn and much ambiguity and disagreement still remain. In this paper, we argue that the conflicting findings of composite studies within this field
relate to methodological differences in the manner in which the composites have been constructed and analyzed. Working from an example, we show how a
composite may be objectively constructed to maximize signal detection, robustly identify statistical significance, and quantify the lower-limit uncertainty related
to hypothesis testing. Additionally, we also demonstrate how a seemingly significant false positive may be obtained from non-significant data by minor
alterations to methodological approaches.
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pdb = figure(width=400, plot_height=400, title=Nome, tools=TOOLS)
péb.quad( ist, . L [:-11, ri 11:1,
£i11_color="#££9900", line_color="#££9900", legend="MC population")
xvals_pdf = np.linspace(-0.1,0.1,num=100, endpoint=True)
pdb.line(xvals_pdf, gen_pdf(x_val=xvals_pdf, mu=np.average(fit diffs), sigma=np.std(fit_diffs)),
legend='PDE',color='black', line_width=1.5)
pb.legend.location = "top_left"
pdb.xaxis.axis_label = "Diff. b/w two methods to calc. ancmalies (at to)"
pdb.xaxis.axis_label text font_size = '10'
pdb.yaxis.axis_label = "Probability density"
pdb.yaxis.axis_label text font_size = '10'

fig4 = gridplot([[p4a, p4bl])
show(£igd)
del fit_diffe # free the memory
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Figure 4 (a) Left panel: one random instance of n = 20 events, for both linearly detrended data (black line) and an anomaly from a 21-day moving average (blue
line). Differences between these two curves show the possible influences of intermediate timescales on the data. (b) Right panel: the differences between these
curves at ¢, for 10,000 random instances (of 2 = 20). The histogram shows a 16 value of 0.1%, a non-trivial difference which may influence the outcome of a
composite analysis.

« nb. The text above reflects the original paper, but from the re-code it seems 16 = 0.01%. Not sure yet where the larger deviation came from in the original,
but may potentially be a bug.

http://tinyurl.com/composite-methods

GitHub repository (download and run it locally):
https://github.com/benlaken/Composite methods LC13
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Conclusions

» Satellite cloud estimates are fraught with limitations and calibration
errors, meaning long-term analysis is problematic at best, and, as in the
case of commonly used ISCCP data, is fundamentally flawed.

* Co-variance of solar-related parameters (UV, TSI, CR flux, solar wind) make
signal attribution difficult.

* Climate variability and volcanic activity, operating over time-scales
similar to the solar cycle, make disambiguating causes of cloud cover
change difficult.

 Composite analysis of FD and GLE events is often compromised by the
difficulties of statistical analysis of autocorrelated data. This is
compounded by the application of inappropriate and black-box statistical
tests.

* Changing signal-to-noise ratios connected to spatio-temporal restrictions
in composites have generally not been sufficiently taken into account in
composite studies, leading to widespread false-positive statistical errors.

COMPOSITE ANALYSIS AND MONTE CARLO METHODS - AN EXAMPLE WITH FORBUSH DECREASES AND CLOUD COVER | ERCA 2016 | 26.1.2016 | GRENOBLE, FRANCE



Conclusions

 Methodological differences and inappropriate statistics in composite
analysis can produce conflicting results. These are the likely source of
discrepancies between cosmic ray — cloud composite studies.

* Present cloud datasets are limited to detect a small changes in cloud
cover as well to detect the regional cloud changes (<several thousand
km) due to the big natural cloud variability (noise). Thus, localized
and/or small effect on cloud cover can’t be completely excluded.

* No compelling evidence to support a global cosmic ray-link using the
satellite cloud data (ISCCP, MODIS) with long- or short-term (Fd)

studies.

e |If cosmic ray-cloud relationship is second order (small and dynamic
changes to cloud cover over certain regions) then it may be very
difficult to detect it with currently available techniques and datasets.
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