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The solar differential rotation
w(b) = A+ Bsin’b (Eq. 2)

b — heliographic latitude,

A — equatorial rotation velocity,

B — gradient of the differential
rotation
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RESULTS.

Weighted least-squares fits of yearly values ofrsaifferential rotation parameté& vs. relative sunspot

number as the indicator of the solar activity
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CONCLUSIONS.
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Figure 11 Yearly running mean of sharpness and quietness values of the past seven decades; the quietness
is almost proportional to the sharpness. The ellipses indicate the times of major changes in the observational

conditions. W. Pétzi et al. Sol Phys (2016) 291, 3103

» weigthed least-squares fits,

Yearly image quality at KSO (1945 — » Image quality filters.

2015: the change in seeing conditions

over the past seven decades of Result for quality filter g2.6 shows
observations Insignificant positive correlation, but the

highest value of correlation coefficient

The quality defined through the (r = 0.44) and the most acceptablggiue
sharpness: (0.13). This indicates a medium correlatic

1 (good) - the granulation Is clearly visiblg and consistency with theorethical
and evertdetalls inside the umbra can be |assumptions.

observed,
3 (bad) - the granulation pattersno
longer recognizable.
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* The version 2.0 of the data series provided by SILSO World Data G26t5), Royal Observatory of Belgium, Brussels ** Clette, F. et al., 2015a, IAU General Assembly, 22, 2249591

Clette, F. et al., 2014, Space Sci. Rev., 186, 35
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